
CS312 Spring 2023 – Midterm Solution

Name:

Date: Start time: End time:

Honor Code:

Signature:

This exam is open course web page, open Ed, open notes, open slides, open your assignment solutions
and open calculator, but closed everything else (e.g., consulting with others and searching online are not
permitted). You have 2 hours in a single sitting to complete the exam. Read the problem descriptions
carefully and write your answers clearly and legibly in the space provided. Circle or otherwise indicate your
answer if it might not be easily identified. You may use extra sheets of paper, stapled to your exam, if you
need more room, as long as the problem number is clearly labeled and your name is on the paper. If you
attached extra sheets indicate on your main exam paper to look for the extra sheets for that problem.

Learning Target Assessment

1

2

3

4

5

6

7

8

1



Page 2 of 8

Question 1. User stories
You are developing a web application for managing a library. When interviewing stakeholders, multiple
individuals described presenting an alert in the user interface when a patron has books due within the
next week. Write two I.N.V.E.S.T. user stories, one from the perspective of a library patron, the other
from the perspective of a librarian working at the circulation desk. Your user stories will be evaluated
on format and quality.

(a) Library patron:

Solution: As a library patron,
I want receive an alert when logged and visiting the library web page that I have books due
So that I remember to return books before they are overdue.

(b) Librarian working at the circulation desk:

Solution: As a librarian checking someone out,
I want receive an alert that they have library books due
So that I can remind them during the checkout process to return the books before they are
overdue.



Page 3 of 8

Question 2. Javascript
Assume wait(sec) returns a promise that resolves after sec have elapsed. Consider the following two
implementations:

1 function first () {

2 console.log(1);

3 }

4
5 function second () {

6 wait (1).then (() => console.log (2));

7 }

8
9 function third () {

10 console.log(3);

11 }

12
13 first();

14 second ();

15 third();

1 function first () {

2 console.log(1);

3 }

4
5 async function second () {

6 await wait (1);

7 console.log(2);

8 }

9
10 function third () {

11 console.log(3);

12 }

13
14 first();

15 await second ();

16 third();

Write the expected output for left-side code below on the left If the right-side code produces the same
result indicate below, otherwise provide the expected output below on the right.

⃝ Both snippets produce the same output

Solution:

1

3

2

Solution:

1

2

3



Page 4 of 8

Question 3. Testing
In Simplepedia we largely ignored fetch errors. Imagine we are extending our Editor implementation
(with a server) to report any errors sent by the server to the user so they can correct their submission.
Using the skeleton below, implement pseudo-code for a F.I.R.S.T. integration test to verify that when
adding an article with a duplicate title, an error response from the server results in error feedback. We
measure error feedback as the title input element having the attribute "aria-invalid" set to "true".
You do not need to provide executable Javascript, instead describe the steps of your test as pseudo-code.
For example, one of the steps in your answer might be:

Assert title input element has attribute ”aria-invalid” with value ”true”

You may or may not need all of the functions below. You only need to include pseudo-code in bodies of
the functions relevant to your answer.

describe("Error reporting when adding an article", () => {

beforeEach(() => {

Solution:

Mock the POST to /api/articles to return an error (with duplicate title message)

});

afterEach(() => {

Solution:

Clear the mocks

});

test("Duplicate title shows error feedback, () => {

Solution: An integration test would need to involve both the Editor component and the parent
component that performs the fetch.

Render the SimplepediaCreator component (containing Editor)

Find and fill the title and content input elements with sample values

Assert title input element does not have attribute "aria-invalid" with value "true".

Find "Save" button and simulate click.

Assert that Editor is still showing.

Assert that the URL is still pointing to the create article page

Find the title input.

Assert title input element has attribute "aria-invalid" with value "true".

Assert mock fetch was performed.

});

});



Page 5 of 8

Question 4. Scenarios
Imagine you are writing a React implementation of a blog. The Post component will either show a short
version of the post truncated after the first sentence, or the full post. In the truncated view the user can
click on a ”Show more” button to show the article and in the full view click on the ”Show less” button
to truncate the test. Write a Gherkin-style test scenario that covers this behavior. You do not need to
provide the implementation details of the tests, just describe the scenario for the test.

Solution:

We want to make sure to test both the change in view form truncated to full and back again.

Given that the post text is "First sentence. Second sentence." and short mode is true

Then "First sentence." should be shown for the post body

When I click on the "Show more" button

Then "First sentence. Second sentence." should be shown for the post body

When I click on the "Show less" button

Then "First sentence." should be shown for the post body

Question 5. React
You are implementing the following view for a simple To-Do tracking application with React. Outline
and label the wireframe (below, left) with a possible set of components. Label the tree (below, right)
with components to show the hierarchy. Further label the tree nodes with state implemented in that
component and label the tree edges with props passed to each component (similar to the figure in pro-
gramming assignment 2). The top-level component ToDoTracker is labeled for you. Any implementation
reflecting good React practices will be accepted. You may not need all the nodes in the tree; cross out
any unused nodes. Your component, state and prop names should be sufficiently descriptive that their
role is clear.

Solution:

Common issues were not including a callback to effect ”Done” and not including state for the
controlled input element.

Done

Done

1. Grade CS312 exams

2. Grade CS416 exams

Enter to-do text

Add to-do

ToDoTracker

ToDoItem

ToDoList

ToDoForm

ToDoTracker

ToDoFormToDoList

ToDosCollection

ToDosCollection
MarkAsDone

Todo
MarkAsDone

ToDoItem

AddToDo

✗ ✗ ✗

ToDoText



Page 6 of 8

Question 6. REST
For each of the following pages in a NextJS-based web application, provide an appropriate RESTful
front-end (browser) URL for that page and, where relevant, an appropriate RESTful server API endpoint
(HTTP verb and URL) that component would interact with. An example is provided is below.

Page Page URL API HTTP verb and URL
Add a new article to Simplepedia /edit POST /api/articles

View the main page for a course
on a Canvas-like site

/courses/1 GET /courses/1

View an assignment as part of a
course on a Canvas-like site

/courses/1/assignments/1 GET /courses/1/assignments/1

Edit the course main page on a
Canvas-like site

/courses/1/edit PUT /courses/1

Question 7. Data modeling
For the following question, you can assume the application serves a single library, that is your data model
can assume a single library.

(a) Identify the models you would define in your server backend to implement the following user story:

As a library visitor with or without an account, I want to be able to check if the library has a specific
book by searching for the title, so I can easily learn if that library has it in their collection.

Solution: The minimum model would be Book. The title would be an attribute of Book, not
a separate model. Since the database only contains availability for a single library there would
not need to be a Library model. Since availability is public and the visitor may not be logged
in, this user story would not require a User model.

(b) Choose ONE answer. When creating an application for libraries to track their collection, you
decided to create an Author model. Which association between Author and Book best models this
relationship?

⃝ An Author has one Book, an Book belongs to an Author.

⃝ A Book has many Authors, an Author belongs to a Book.√
An Author has many Books, a Book has many Authors.

Solution: A book can have multiple authors and an author can have multiple books and so
we need a many-to-many relationship.

(c) You want to implement a features where patrons can put holds on books that are currently checked
out, e.g., put themselves on a first-come-first-serve wait list. What association between Patron and
Book would model this relationship. Your answer should be formatted similarly to the answers to
the previous part. In your answer note any Model attributes needed to support this feature.

Solution: There is a many-to-many relationship between the Patron and Book models, i.e., a
patron have put a hold on many books and a book can have many holds. We would introduce
Hold model that stored the date and time the hold was placed to enable us to find the oldest
hold when a book is returned. Thus the association would be a Patron has many Books through
Hold, a Book has many Patrons through Hold.



Page 7 of 8

Question 8. Development processes
In class we practice continuous delivery, in which we can deploy our applications on demand with a
single command. An alternative is continuous deployment, in which each integration to the main branch
is automatically deployed.

(a) What technical changes, if any, in our project workflow to enable continuous deployment?

Solution: Add a step to the GitHub actions to automatically deploy main after a pull request
is completed and the merged code passes the test suite.

(b) Would we need to make other changes to our processes to enable continuous deployment? Your
answer should specifically address testing and the role of our different branches.

Solution: No. Our stated process is that the main branch should always be deployable, so the
only difference is when that deployment occurs.

(c) One challenge for continuous delivery is coordinating with specific events, e.g., our sprint demo or
marketing push. How could we control and coordinate feature availability?

Solution: We could use feature flags to coordinate and control feature availability (for selective
rollout, to coordinate with specific events/marketing, etc.). We would deploy the change but
not turn on the feature until the appointed time or for a specific user.



Page 8 of 8

Page intentionally blank.


