
1

Introductions

• Your name
• Think about an app or website that you’ve

used in the past year.
– What is a feature that really impressed you, and

why?
~OR~

– What was a challenge working with it, and why?

Alongside the more formal learning goals I hope you will gain some important
development skills that are not necessarily are part of your other courses, such as
working with non-technical customers and more.

2

What are you hoping to get out this
class?

CS312 learning goals:
1. Describe and employ modern methodologies for

managing SW development
2. Use tools and services that support those processes, such

as version control, GitHub, continuous integration, etc.
3. Describe and employ SW development principles,

patterns and best-practices, such as test-driven
development (TDD), DevOps, etc.

4. Describe, evaluate and employ technologies for full stack
web development and single page web applications (SPAs)

5. Complete a large software development project as part of
a team

The workflow we will implement has some key “technical” steps, but also some ”non-
technical” steps that are equally important for ensuring that we develop the right
software, i.e., software that solves the user’s actual problem, not just software that
works correctly. Unlike a class assignment, where there is (often) a very clear task and
problem to solve, in the project (and any real-world situation) you will need to figure
out the problem too! That is figure out what you should be building!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

3

Talk to customer

Lo-fi mockup

User stories

Behavior-driven
design

Test-driven
development

Deploy

Here are some of the tools and technologies we will use. These specific tools and
technologies are a means to an end. I care more that you learn the “why” for these
tools than the ”how” of any particular technology or framework.

This class has a lot of moving parts. And I have made many choices for tools,
techniques, methodologies. In some cases, it is a choice among many similar
alternatives where there is no "right" answer. I don't want you to get bogged down in
questions of whether any particular tool or technology is the best in a technical or
other sense (we often are optimizing for the best class experience, not the best tool).
You may be more familiar with the alternatives. As we will discuss later, I ask you to
"do the class" with the class tools. Doing so will make your teams more efficient. At
the same time, if our approach seems to conflict with best practices, don't hesitate to
ask me about it - we will both get a lot out of the ensuing discussion.

Why this set of tools? Let’s talk a little bit about the context we are working in…

4

Technology

HTML
JavaScript
CSS
Frameworks
Databases

Tools

VCS
Testing frameworks
Linter
Continuous Integration

(CI)
Platform as a Service

(PaaS) & Infrastructure
as as Service (IaaS)

Process

Agile (Scrum)
Test-driven

development (TDD)
DevOps
Design patterns

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

5

Context: Evolving ecosystem

Shrink wrapped ⇒ Software-as-a-Service
Monolithic ⇒ Services and serverless
On-premise ⇒ Cloud

SaaS tools are now so integral to how we work we don't really think about it (till we
have to deal with Internet service in rural VT…), but it wasn't/isn't always this way.

What about mobile native applications? A counter example for this trend?
+ Use HW features unavailable in HTML5
+ May be faster…or not (many just HTML5 apps in native “container”)
+ Your brand is on user’s home screen (though can get this in other ways)
- Harder to maintain with multiple platforms to support
- Upgrades now once again user’s problem (although app stores mitigate some of

that…)

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

6

Shrink wrapped software (SWS) ⇒
Software-as-a-Service (SaaS)

SWS
Client-specific binaries that
must work in many HW/SW
environments
+ Rich user experience
- Hard to maintain, with
extensive compatibility testing
required

SaaS
Online client-server model
+ One copy of SW, one HW
environment (controlled by
developers)
+ Easy to release updates
+ Easier to enable user
collaboration
- Limited by online latency,
capabilities of browser

What about mobile native applications?

SOA: An architecture that focuses on discrete services instead of a “monolithic”
design (where components are part of the same application and can often directly
access all of the application’s data).

https://courses.cs.washington.edu/courses/cse452/23wi/papers/yegge-platform-
rant.html

7

Achieving modularity in SaaS?
Modularity encapsulates complexity into (relatively)
independent units
One approach is Service-Oriented Architecture (SOA)
Most famously? expressed in 2002 Bezos mandate to
Amazon*

• All teams will henceforth expose their data and functionality
through service interfaces.

• Teams must communicate with each other through these
interfaces.

• There will be no other form of interprocess communication
allowed…

• All service interfaces, without exception, must be designed from
the ground up to be externalizable…

• Anyone who doesn’t do this will be fired.

*Steve Yegge 2011 Blog Post

What do we mean by services and service-oriented architecture (also sometimes
called microservices). As described in Bezos mandate, the system is decomposed into
independent services. Each can be developed/deployed independently. In the ideal
case the complexity of the system only "scales" with the most complex modules (not
the system as a whole). In practice that ideal is not achievable. And as you might
image, this approach introduces its own challenges, e.g., debugging,
coordination/collaboration across service boundaries. So why this mandate? In part it
was to turn Amazon into a platform, not just an ”application”, and to do so they were
going to “eat their own dogfood”, i.e., use their internal tools like a customer.

Absolutes rarely work (moderation in all things). Services are not always appropriate
and the trends towards SOA has in some cases swing back towards more monolithic
applications. For example, part of Amazon Prime described how transforming their
application back to a more monolithic approach substantially reduced costs:
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-
audio-video-monitoring-service-and-reducing-costs-by-90

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

8

Monolithic ⇒ Multiple services?

Monolithic Services

Student
Info

Course
Info

Course
Registration

Backend

Frontend

Course
Registration
Service

Student
Info
Service

Course
Info
Service

That trend back to monoliths, is sometimes only monolithic in a sense. A common
approach today is not to decompose an application into multiple discrete services,
but to build an application using multiple external services. That is use a separate
“third party” service for authentication, for images, for real-time chat, etc. An
extreme version of this are “serverless” architectures – a terrible name – in which the
backend code you write is not stateful. Instead, it is interacting with multiple stateful
services… but more on that in the future.

9

Monolithic ⇒ “Backend” services?

Monolithic “Backend” Services

Student
Info

Course
Info

Course
Registration

Backend

Frontend

Student
Info

Course
Info

Course
Registration

Auth

Frontend

DB

Correct: A.

Microservices can trade application complexity for system complexity. A
microservice-based architecture can be more difficult to design and maintain at a
system level, but each individual component of the system is greatly simplified.
(https://www.sitepen.com/blog/2017/02/20/microservices-and-spas/)

I should note that pendulum might be swinging back the other direction (towards
more monolithic systems). Why? Decomposing systems too much can introduce
additional overhead and friction. And often that decomposition is not a function of
separate functionality, but often separate parts of an organization (i.e., different
teams).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

10

Which of the following is a
disadvantage of services-oriented-
architecture (SOA) compared to a
monolithic design? SOA:

A. May be harder to debug & tune
B. Results in lower developer productivity
C. Complexity is a poor match for small teams
D. Is more expensive to deploy than monolithic,

because more hardware is needed to handle the
same workload

Traditional "thin client" model
1. User enters an address
2. Browser requests a resource from the address
3. Server at that address returns the resource
4. Browser renders the resource
5. User clicks link or fills in form
6. Browser makes new request to server
7. Server returns _new_ resource
8. Browser loads new resource and displays it

This is a "thin client" model in which all the real work is happening and all state is
maintained on the server. JavaScript may be used, but only for simple tasks: form
validation, layout tricks, and interactive - but stateless - features like an accordion.

Single page application or "thick" client

Google (with the help of some Microsoft technology) upturned this model with the
introduction of Google maps. Prior maps applications, e.g., Mapquest, would request
a new page from the server when you wanted to navigate. In contrast Google used an
MS technology called AJAX which allows JavaScript to make requests to the server
without loading a new page in the browser. In this "thick client" approach, much of
the application functionality is implemented in the browser with communication

11

Single Page Applications (SPA)

Server now mostly
provides data, making
SPAs natural consumers
of services

Wasson, Microsoft

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx

happening behind the scenes. The result was (is) an experience much closer to a
desktop application. While this approach is commonplace now, it was revolutionary
at the time.

We would choose such an approach when we need to implement an application with
extensive user interaction that primarily interacts with an API, i.e., an application
programming interface intended for use by other computational components (not
people). Such APIs are what (micro)services typically expose, making these kind of
applications natural consumer of/fit with service-oriented architectures.

11

Below a certain scale, it is hard to compete on price with experienced data center
operators building warehouse-scale computers. Economies of scale and relentless
optimization pushed down cost of largest datacenters many fold (estimates of 3-8⨉).
Remember when thinking about cost, it is not just the cost to purchase the machine,
but the cost to manage the space, power the machine, maintain it, etc. The actual
hardware itself is only a part…

The barrier to entry is now very low (don’t need to buy HW up front) and individual
developers have access to same computing power as the big players. Infrastructure-
as-a-service (IaaS), e.g., the ”original” AWS, are increasingly becoming platform-as-a-
services, PaaS. With a PaaS, the developer connects many “higher-level” services
instead of provisioning the underlying servers, storage, etc.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

12

SaaS’ 3 demands on infrastructure

1. Communication: Customers must be to
interact with service

2. Scalability: Respond to fluctuations in
demand or new services adding users rapidly

3. Dependability: Service & communication
available 24x7

Cloud providers can offer all three on a pay-as-
you-go basis (utility) at hard to match prices

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

13

Plan & Document ⇒ Agile

“Plan-and-Document”:
1. Before coding, the project manager makes plan
2. Write detailed documentation for all phases of

the plan
3. Progress measured against the plan
4. Changes to project must be reflected in changes

to documentation and the plan

Implementations: Waterfall, Spiral, …

Waterfall: Sequential phases of project (like a cascading waterfall).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

14

Waterfall

Requirements

Design

Development

Testing

Operations

Waterfall process:
Sequential phases

Advantages:
• Errors are caught early (and more cheaply) before manifesting

in next phase
• Extensive documentation is deliverable (can facilitate

maintenance)

Spiral: ”Spiralling” iterations of:
Determine objectives and contraints
Evaluate alternatives and identify and resolve risks
Develop and verify prototype
Plan next iterations

Spiral could be described as Waterfall with prototyping. Both involve a lot of planning
and long phase changes (i.e., iterations can be long)

“However, as originally envisioned, these iterations were
6 to 24 months long, so there is plenty of time for
customers to change their minds during an iteration!
Thus, Spiral still relies on planning and extensive
documentation, but the plan is expected to evolve on
each iteration. “

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

15

Spiral

Answer: B

P&D assumes a phase is done once we move on. But we can imagine that during
development, testing, deployment, etc. we observe we need to change the design.
Revisiting the design process can be challenging at that point in these processes.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

16

What is a major challenge faced by
P&D processes such as Waterfall and
Spiral?

A. Careful planning, then measuring progress
against the plan

B. Reacting to changes in a particular phase
after that phase is done

C. Using prototypes to get customer feedback

http://agilemanifesto.org

17

Agile Manifesto (2001)

We are uncovering better ways of developing software by
doing it and helping others do it.
Through this work we have come to value:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.

http://agilemanifesto.org

http://agilemanifesto.org/

Waterfall: Sequential phases of project (like a cascading waterfall).

In contrast Agile, implements multiple iterations of those lifecycles in short repeated
cycles. Embraces change as a fact of life: continuous improvement instead of a single
planning planning phase. Team continuously improves working but incomplete
prototype until customer satisfied (with customer feedback after each 1-2 week
iteration).

Note that when we talk about agile, we are talking as a project management
“philosophy” (like P&D is a description of more than just Waterfall). Scrum, Extreme
Programming (XP) are specific methodologies guided by the Agile philosophy.

In class we will implement one version of agile, in a way thar is tailored to a class. Our
approach is not the only one (or necessarily the best – a matter of opinion) or even
appropriate for all applications/industries. But it will give us hands-on experience
with these approaches to project management.

Agile is also a ”brand” with consultants, etc. We are really aiming to be “lowercase a”
agile, that is demonstrate agility, as opposed to the “capital A” Agile, the formal
process that someone might want to sell you.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC

18

Plan & Document ⇒ Agile

Dilbert 11/26/17

Requirements

Design

Development

Testing

Operations

Waterfall process:
Sequential phases

Agile: All lifecycle phases
in repeated short cycles

license.

18

The front-end is typically the portion of the application the user interacts with directly
(and runs in the browser), while the back-end is the portion of the application that
provides resources (data) to the front-end (e.g., implements persistent datastores,
business logic, etc.).

"Being a Full-Stack Developer doesn't mean that you have necessarily mastered
everything required to work with the front-end or back-end, but it means that you are
able to work on both sides and understand what is going on when building an
application.”
[1](https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-
2017-5c3c08a1600c)

“DevOps essentially extends the continuous development goals of the Agile
movement to continuous integration and continuous delivery.”
https://www.ansible.com/blog/confessions-of-a-full-stack-devop
https://newrelic.com/devops/what-is-devops

19

“Full-Stack”, “DevOps” and other
buzzwords…

DevOps? Cross-functional (no more silos) teams that:
• Apply “development” practices to operations, e.g.,

infrastructure as code
• Automate everything
• Integrate operations into developer role

StackOverflow 2017 developer survey

"A Full-Stack Web Developer is
someone who is able to work
on both the front-end and back-
end portions of an
application.”[1]

https://newrelic.com/devops/continuous-integration
https://insights.stackoverflow.com/survey/2017
https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-2017-5c3c08a1600c

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

20

Summarizing our (the) landscape

• SW (can) evolve quickly to match user needs
• But doing so requires a development process that

embraces change
• agile is a process that embraces change (as

opposed to plan & document, etc.)
• SaaS is an ideal domain for agile processes
• Cloud gives everyone access to scalable HW and

services for implementing SaaS
• SPAs are natural consumers of these services

Synergistic methods (deliver software as a service), tools (frameworks, etc.) and
processes

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

Software as a
Service (SaaS)

agile
Development

Highly productive
frameworks &

tools

Users can quickly use
latest agile iteration

Frameworks & tools minimize obstacles to agile
SW development

Frameworks match
SaaS needs

Correct: D.

We will do a lot of ”greenfield” development in class but that is not necessarily true
of your future tasks. A lot of code has already been written, and SW maintenance
(adding new features to legacy SW) is ~60% of SW costs. Working with “legacy code”
matters. Part of what we will learn is how to write code that is maintainable, and by
virtue of working with large teams, how to work with code others have written.
Whenever you are about to disregard legacy SW, remember that legacy code is
successful code, otherwise it wouldn’t still be around.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

22

Which aspect of the software lifecycle
consumes the most resources?
A. Design
B. Development
C. Testing/debugging
D. Maintenance

“All programming requires is a creative mind and the ability to organize your
thoughts. If you can visualize a system, you can probably implement it in a computer
program. This means that the greatest limitation in writing software is our ability to
understand the systems we are creating.”

Complexity is our enemy. The tools and processes we will learn about are designed to
help minimize and/or overcome complexity. But tools alone are not enough. We have
to design software to be simple or at least simpler. How can we do so? 1) Actively try
at each moment to make our code simpler and more obvious, 2) encapsulate the
complexity we can’t eliminate (by providing a simple interface). We will see and do
both this semester.

[click]

We have all done this (I am doubtful of anyone who says otherwise…) And the
structure of most courses actually encourages “tactical programming”. Most
programming assignments are “green field” (you start from scratch), there are often
hard deadlines, and you rarely need to use the code you write in the future, so there
is minimal cost to introducing complexity.

“Almost every software development organization has at least one developer who
takes tactical programming to the extreme: a tactical tornado. The tactical tornado is

23

Tactical vs. strategic programming

• Tactical: The focus is getting something, anything,
working
“You tell yourself that it’s OK to add a bit of complexity or
introduce a small kludge or two, if that allows the current
task to be completed more quickly. This is how systems
become complicated.”

• Strategic: Working code is not enough
“It’s not acceptable to introduce unnecessary complexities in
order to finish your current task faster, […] Most of the code
in any system is written by extending the existing code base,
so your most important job as a developer is to facilitate
those future extensions.”

Ousterhout, John K. . A Philosophy of Software Design,

a prolific programmer who pumps out code far faster than others but works in a
totally tactical fashion. When it comes to implementing a quick feature, nobody gets
it done faster than the tactical tornado. In some organizations, management treats
tactical tornadoes as heroes. However, tactical tornadoes leave behind a wake of
destruction. They are rarely considered heroes by the engineers who must work with
their code in the future. Typically, other engineers must clean up the messes left
behind by the tactical tornado, which makes it appear that those engineers (who are
the real heroes) are making slower progress than the tactical tornado.”

There are no absolutes – moderation in all things. We don’t to spend so much time
coming up the “best” design that we don’t accomplish anything. We should think
about this from an investment perspective. We are continually making small
investment (say 10-20% of our time) make the system better. This may be proactive –
spending a little more time up front to improve our design, or reactive – fixing a
design problem instead of working around it.

Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition

23

“Of the three manifestations of complexity, unknown unknowns are the worst. An
unknown unknown means that there is something you need to know, but there is no
way for you to find out what it is, or even whether there is an issue. You won’t find
out about it until bugs appear after you make a change. Change amplification (change
is hard) is annoying, but as long as it is clear which code needs to be modified, the
system will work once the change has been completed. Similarly, a high cognitive
load will increase the cost of a change, but if it is clear which information to read, the
change is still likely to be correct. With unknown unknowns, it is unclear what to do
or whether a proposed solution will even work.”

More generally we will see this warning signs in slightly different forms – different
people use different descriptions, but there are crosscutting ideas about the difficulty
of making changes/improvements.

Ousterhout, John K. . A Philosophy of Software Design, 2nd

24

Signs complexity is winning

1. Change is hard: Seemingly simple changes
require modifying code in many places

2. High cognitive load: Lots of work to figure
out how to complete your task correctly

3. Unknown unknowns: Not clear what you
need to change to complete your task

Ousterhout, John K. . A Philosophy of Software Design,

The only people that can see the Statue of Liberty’s hair are those that climb up the
torch. Yet the artist(s) included hair anyway!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

25

Beautiful code

Beautiful code:
• Meets customer needs
• Easy to evolve

The “cruft” that makes
enhancements expensive
is the technical debt
created by doing the easy
thing, not the “Right
Thing”

earthcam.com

One goal of this course is to practice effective SW development methodologies. That
is the process itself is important. Our goal is to practice strategic programming, i.e.,
working code is not our only goal. Recall that perfect practice makes perfect. I want
you to ”slow down” and make those investments and the structure of the course is
intended to enable you to do so!

We have a wide variety of backgrounds:
• Some of you have learned these technologies in/for another class
• Some of you have used these technologies in an internship or summer research,

and
• Some of you have never touched these technologies before…

In some of these aspects, CS312 will be similar to your future working environments
but more challenging (a company doesn’t usually create a team of composed only of
new developers). To overcome these challenges, I expect you to:

* Be responsible for independently picking up the details of unfamiliar tools or
technologies.
* Put in the effort to make sure you don't get left behind. Use the resources on the
course page (and others) and make sure to ask me and others for help when you
need it. Don't be the teammate that can't contribute because you don't know what is
going on!

26

What I ask of you

“Do the class”
• Commit to the CS312 tools and processes

Perfect practice makes perfect

• Be a good great teammate
Be responsible for your learning, don’t get left
behind
Use your knowledge to make your team better

If you have prior experience, we expect you to:

* Use your knowledge to actively make your team better, not to sit back in judgement
or frustration. Recall the often the best way to learn is to teach (e.g., "see one, do
one, teach one"); you will get more out of the class if you actively engage with all of
your classmates, including those with less experience.
* Understand you can't do it alone. It may seem like you can do the project better or
faster by yourself, but the end product will actually be worse if the whole team can't
(or doesn't) contribute.

26

Remember – you are all learning!

Being a great teammate is a skill in its own right that can be developed and honed
(like any other skill).

28

Being a great teammate

Li et al. study “What Makes a Great Software Engineer” – engagement
with teammates
• Creates shared context: Molding another person’s understanding of

the situation while tailoring the message to be relevant and
comprehensible to the other person.

• Creates shared success: Enabling success for everyone involved,
possibly involving personal compromises.

• Creates a safe haven: Creating a safe setting where engineers can
learn and improve from mistakes and situations without negative
consequences.

• Honest: Truthful (i.e., no sugar coating or spinning the situation for
their own benefit).

Experiment with Specification grading. No “points” or partial credit. Everything is
graded on a form of satisfactory/not yet satisfactory. All elements have an
opportunity to receive feedback and resubmit (for programming assignments,
project) or retake a similar problem (exams). Final grade is determined by the bundles
described in the syllabus. Why? A grade should reflect your demonstrated
understanding of the material at the end of the course. Assessing your work is a
necessary but imperfect proxy for assessing understanding. My goal and
responsibility is to create the best structures possible for you to demonstrate your
true understanding. And your corresponding responsibility is to do everything you can
to make your work accurately reflect your true understanding. Note that is an
ongoing experiment. It will almost certainly require tweaking. I welcome your
feedback and am ready to change any aspects that are not working.

There is extensive ”Getting Started” page with software to install. Please “get started”
so you are ready to go for next class and we can resolve any setup problems.

29

Course logistics
• Partially flipped, with content to review before class to create time

for in-class work (the “practicals”)
• Specification grading
• 4 programming assignments in weeks 1-5 prepare for the project

– Meaningful attempt by initial deadline “unlocks” later final deadline
– Combination of automated testing and manual feedback

• Ongoing “practical” exercises with automated testing
• Exam partway through the semester tied to class Learning Targets

with optional retest during finals week
• Large team project starting in week 6!
• Ed discussion board for Q&A, go/cshelp for peer assistant hours

Our goal in this course it maximize our productivity by using professional tools and
practices (of which generative AI, is definitely one!). As an experiment I used GitHub
copilot all summer and continue to have it turned on. I use it and ChatGPT to help
assemble materials for this course. You are welcome and even encourage to
experiment with those tools in this course. Here, as in any professional situation, you
are responsible for the code that you submit/commit. That AI generated the code it is
not an excuse for code that doesn’t work.

That said, I would encourage you to not just dump the assignments into ChatGPT, et
al. In many cases you are learning to use Javascript et al. for the first time.
Finding/generating code that seems to work but you don’t know why doesn’t help
build the understanding you need to tackle these problems in the future. The analogy
you might hear a lot is it like it is like working out by lifting weights with a forklift. You
lifted a lot of weight, but to what end… In our programming assignments there are
lots of tests and other feedback to know if the code works. But in the projects and
elsewhere, that isn’t the case. You are responsible for both writing the code and
ensuring it works. Magic code only makes that harder…

30

Course policies (in an AI world!)

• ✅ Working together
• ❌ Working jointly on the same solution (same or

different computer) to an individual assignment
• ✅ Searching online for docs, suggestions,

StackOverflow, etc.
• ❌ Searching for or using previous solution to

problem, even if freely available online
• ✅ Generative AI (ChatGPT, Copilot), but

acknowledge its use in a comment

