
Here is an example from Amazon. If we opened the developer tools to view the page,
it would look like one large ”chunk” of HTML, but that is not how the page is designed
or implemented. Instead, it is constructed as a set of components that can be
composed together to create the final page (application). There are all kinds of
components on this page: individual book listings, the pager, the multi-item
carousels, the small item views. Each one of these entities is a component. They all
have some "generic" form (i.e., show cover, title, reivews), some associated data that
changes how each instance appears, and potentially some interactive functionality.

This is largely how modern web development is done, by composing “smart” modular
components rather than hand coding everything in raw HTML.

Component based web design
Listing for
individual books

Pager

Multi-item
carousel

Small item view

Consider a Color Picker… It has a swatch that shows the current color and
three sliders for changing the RGB values. What are some possible sub-
components? The color swatch and the slider (for each color
component). What are we looking for when thinking about components?
We are looking for distinct roles, and repetition.
1. The swatch and the sliders have distinct roles.
2. And the sliders for each color component are repetitive.

As we start to think about our applications in terms of components, it is
not just thinking about how we might “split” up the way the page is
displayed, it also thinking about data, or specifically state. What
information do our components maintain and how might it change as the
user interacts with the application.

Consider the blue channel of the color picker.
What data do we have? The color value.
How many views of that data do we have? Three: 1) the position of the
slider itself, 2) the numeric value label, and 3) the color swatch. All three

3

“Color picker” component example

Ro
le

 1
: s

w
at

ch

Role 2: slider

Data:
Red Value

Data:
Green Value

Data:
Blue Value

need to be updated when we change the red value.

Implementing that kind of interactivity is the role for Javascript in the
browser.

3

I will use the term the DOM frequently. At a high-level the “DOM” is what the
browser renders and I will use as a catch-all term for what is shown on the screen.
More specifically, a web page (or document) is a set of (many) nested boxes, i.e.,
nested elements. The Document Object Model (DOM) is the tree data structure
representing the nested structure of the page. The boxes (HTML tags in our context)
are nodes in the tree. The DOM properties and methods (the API) provide
programmatic access to the tree to access or change the document’s structure, style
or content.

4

The DOM and HTML
<body>
 <div class="color-picker">
 <div class="color-swatch" ></div>
 <div class="red-slider">
 <div class="color-label">red:</div>
 <input type="range" min="0"
 max="255" id="slider-r"
 value="0"/>

 </div>
 <div class="green-slider">...</div>
 <div class="blue-slider">...</div>
 </div>
</body>

body

div
.color-picker

div
.color-swatch

div
.red-slider

div
.color-label

input

span
#value-r

div
.green-slider

div
.blue-slider

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Going back to our colorpicker, we know that we want the slider inputs to control the
color and the numbers for each slider.

<click> Here is an excerpt from the JS implementation for our color picker, showing
both the HTML/DOM and the key function that updates the color swatch, and
numeric value each time a slider is moved, i.e., keeps everything in sync.

Interactive demo: https://codepen.io/lbiester/pen/VwJJdzV?editors=1010

5

// Set oninput callback for each slider
sliders.forEach((slider) =>
 slider.addEventListener("input", update));
const update = function() {
 colorBox.style.background =
 `rgb(${sliders[0].value}, ${sliders[1].value}, ${sliders[2].value})`;
 sliders.forEach((slider, index) =>
 labels[index].innerHTML = slider.value);
};

Use JS to create interactivity
<div class="red-slider">
 <div class="color-label">red:</div>
 <input type="range" min="0"
 max="255" id="slider-r"
 value="0"/>

</div>

slider controls
color/number

Notice it uses properties defined in the DOM (value, innerHTML) to retrieve the
current values for each slider and uses those values to update the swatch and the
labels.

Interactive demo: https://codepen.io/lbiester/pen/VwJJdzV?editors=1010

6

// Set oninput callback for each slider
sliders.forEach((slider) =>
 slider.addEventListener("input", update));
const update = function() {
 colorBox.style.background =
 `rgb(${sliders[0].value}, ${sliders[1].value}, ${sliders[2].value})`;
 sliders.forEach((slider, index) =>
 labels[index].innerHTML = slider.value);
};

Use JS to create interactivity
<div class="red-slider">
 <div class="color-label">red:</div>
 <input type="range" min="0"
 max="255" id="slider-r"
 value="0"/>

</div>

slider controls
color/number

This function is provided as callback for the "input" event on the slider (an event
defined in the DOM), that it is triggered moving the slide input.

Interactive demo: https://codepen.io/lbiester/pen/VwJJdzV?editors=1010

7

// Set oninput callback for each slider
sliders.forEach((slider) =>
 slider.addEventListener("input", update));
const update = function() {
 colorBox.style.background =
 `rgb(${sliders[0].value}, ${sliders[1].value}, ${sliders[2].value})`;
 sliders.forEach((slider, index) =>
 labels[index].innerHTML = slider.value);
};

Use JS to create interactivity
<div class="red-slider">
 <div class="color-label">red:</div>
 <input type="range" min="0"
 max="255" id="slider-r"
 value="0"/>

</div>

slider controls
color/number

Listener for
changes in input

Callback

That is when our JavaScript code runs the first time it doesn't actually change the
color. Instead, it registered a callback to invoked when the user move the slider (the
“input” event). Whenever the user moves the slider, that call back, the update
function, is placed in the callback queue to be executed at the next opportunity.

The update closed over references to the colorBox, sliders and labels so that it can
access and update those elements even though the corresponding variables are no
longer scope when that function executes.

8

Recall that the browser is
asynchronous

DOM

AJAX

Timeout

Web APIs

Callback Queue

Event Loop

We can imagine we would want to add more inputs <click> and outputs, <click>, e.g.,
the color in hex, etc. Our color picker just got a lot more complicated! How do we
keep all these inputs and outputs in sync with each other (a change to any input
should update all outputs)? If we continued with the “vanilla JS” approach, each time
we add a new input or output we would need to update the callbacks to update all
other inputs/outputs. Simple enough at the start, but you can imagine it gets
complicated quickly. Each of the input elements, the numeric input, the slider, the
text box, all maintain their own state and the data needs to flow back and forth
between them.

10

How to extend the color picker?

https://www.w3schools.com/colors/colors_rgb.asp

Input &
Output

The challenge of keeping everything in sync is not a new problem… Some solutions
that have been/are in use. In class we are going to focus on React (again one choice
amongst many…)

11

Different “design patterns” for the
same problem

• Event based (e.g., Backbone)
Changing the data triggers an event
Views register event handlers

• Two-way binding (e.g., Angular)
Assigning to a value propagates to
dependent components and vice versa

• Unidirectional dataflow (e.g., React)
Efficiently re-render all subcomponents
when data changes

React is a framework (library) designed to help us solve this exact problem. That is
build highly interactive and “reactive” UIs. The key idea is to decouple the render of
the current state from the updates to that state. You just need to answer those
different questions and do so separately. What do I want to the UI to look like at any
given moment – more formally for any given state of the application – and how do I
update that state based on user actions. We don’t have to answer the much trickier
question of how do we want to update the UI in response to user actions. React takes
care of efficiently propagating those state changes to (and throughout) the UI.

Another way to think about it: in React, data only flows one way. That is there is a
single source of truth, the application state and the data flows to all views of that
data. To change the view, we change the state and propagate those changes
throughout the UI. There are not two pieces of state that need to stay in sync, i.e.,
data doesn't flow back and forth.

https://medium.com/@dan_abramov/youre-missing-the-point-of-react-
a20e34a51e1a

12

Philosophy of React

1. Render the UI as it should appear for any
given state of the application

2. Update the state in response to user actions
3. Repeat (i.e., re-render UI with new state)
The key conceptual idea is that those two steps
are now decoupled and so simpler
The key technical enabler was efficient re-
rendering when the data changes

Answer: A

By state we mean what information/data do I need to uniquely specify the UI. In this
case there is only one piece of information needed to uniquely specify the UI – the
RGB color components. All the inputs and outputs are determined by that
information (that is the positions of the sliders, the swatch color, etc.) and should all
show the same information.

13

What is the state in the “extended”
color picker, i.e., what information do
we need to uniquely specify the UI?

A. The current color components
B. A and the slider positions
C. B and the numeric text inputs
D. C and the outputs, e.g., hex output

go/cs312-inclass

That’s it! Even in the most complex color picker, the only state is the 3 current color
components. Every aspect of the UI depends on those three values. Here we
implement that state using Hooks. At its simplest, we can create state with the
useState() function. This returns an array with the value (the current value for our
state object, initialized to the value we pass into useState()) and a setter function for
updating the state (e.g., setRed). We shouldn’t (and by declaring it as const can't)
change the value (by reassigning red, etc.), instead we use the setter function. When
we call the setter function that signals to React to re-render to update the UI based
on the new state value.

JS note: This is an example de-structuring assignments, that is assigning the elements
in the array returned by useState to individual variables.

14

What is the state in our “enhanced”
color picker?

Recall state in React is the answer to the
question: What information do I need to
uniquely specify the UI?

const [red, setRed] = useState(0);
const [green, setGreen] = useState(0);
const [blue, setBlue] = useState(0);

JS Note: De-structuring assignment
splits array into distinct variables

Let’s revisit the steps of the philosophy of React in the context of the color picker.

Step1 : The state – the 3 color components – determines the color of the color
swatch, the position of the slider and the value in the numeric output. We first make
sure we can render those values in our UI. By render that UI we mean render
components corresponding to the desired HTML, e.g. a <div> for the swatch, “range”
<input>s for the sliders, etc.

15

1. Render the UI for a given state
const [red, setRed] = useState(0);
...

Step 2: We will then connect these components such that changing the slider bar
changes the state (e.g., via the setRed setter) – i.e., the orange arrows.

Step 3: Setting the state will trigger React to re-render, but with a new value of state.
That new value of state will propagate (via the blue arrows again) to create the new
view (with the updated color value).

Is the slider aware of the numeric input (or the swatch)? No. Each component only
needs to know the state and how to update that state where relevant! That is how
React helps us minimize the complexity when building complex UIs. The complexity
grows linearly with the interactions we add, instead of exponentially with the
interactions between those interactions.

16

2. Update the state, then re-render
const [red, setRed] = useState(0);
...

We can translate that philosophy of React into a recipe for developing React
applications/components…

17

“Thinking in React”

1. Break the UI into a component hierarchy
2. Build a static version in React
3. Identify the minimal (but complete)

representation of state
4. Identify where your state should live
5. Add “inverse” data flow (data flows down,

callbacks flow up)

https://react.dev/learn/thinking-in-react

https://react.dev/learn/thinking-in-react

The fundamental unit of React is the component. In React, we can implement
components as either classes or functions. For our purposes, we will exclusively use
function-based components, but many older examples you might find online will use
classes (as did previous versions of this course).

A function-based component is a function that takes a single object argument,
termed the props, and returns a hierarchy of components (think of these child
components like a nested tree, similar to the DOM itself) with a single root. The
returned hierarchy is the view, and specifically what is added to the virtual DOM.

The first step in building a React app is break down the UI (the view) into a hierarchy
of components and sub-components. In the color picker there is one main
component (the color picker itself, with the swatch) and the 3 sliders and
corresponding value display/inputs.

Explore this starting point at: https://codepen.io/lbiester/pen/vYqqreb?editors=1010

18

Break the UI into components

LabeledSlider

ColorPicker

A component is function that takes a single argument, the props,
and returns a hierarchy of components

Here we render a <h1> HTML components, and a custom components that displays
information about a person. This is the JS that is actually executed to create our view.
But as you might already sense, it is awkward to write. Since we are ultimately
producing HTML, we would like a representation that is closer to that eventual
product. For us that is JSX. <click>

JSX is an extension to Javascript for efficiently describing the UI, including both React
components (like Person) and HTML (like h1). Since JSX is an extension to JavaScript,
we will need a compiler, really a transpiler, to convert it to standard JavaScript. The
online sandboxes do that for us (as an option) and the tool we will use for setting up
React application (e.g., Next) integrates the necessary compiler to transpile JSX (and
support features of ES6). We will use JSX in our components (as it is much more
concise and clearer). However, you should realize that it is being translated directly
into “plain” JavaScript functions like shown above (i.e., it is just “syntactic sugar”).

20

Concisely expressing the view: JSX

// Example HTML
const heading = <h1>Hello, world!</h1>;
// Example component
const person = <Person name={p.name} address={p.addr} />;

// Example HTML
let heading = React.createElement("h1", null, "Hello, world!");
// Example component
let person = React.createElement(Person, {
 name: p.name,
 address: p.addr
});

Rendering with JS

Rendering with JSX

The names of the props, the LHS of the `=` becomes the keys/properties in the props
input, and the RHS (in the curly brackets), becomes the values. <draw line connecting
those>. Inside the curly brackets are Javascript expressions, and typically references
to variables defined in our component function.

21

Concisely expressing the view: JSX

// Example HTML
const heading = <h1>Hello, world!</h1>;
// Example component
const person = <Person name={p.name} address={p.addr} />;

// Example HTML
let heading = React.createElement("h1", null, "Hello, world!");
// Example component
let person = React.createElement(Person, {
 name: p.name,
 address: p.addr
});

Rendering with JS

Rendering with JSX

Note: put embedded
JS in { }

name prop

address prop

The names for our props, “name” and “address” in this example, are our choice
(excluding some reserved names). But the props we pass must match the props
expected by the component. This JSX implies that there is a Person component, i.e., a
`Person` function, and it expects its props to contain a name and address property.
Note that the convention is to start component names with upper case letters.

22

Concisely expressing the view: JSX

// Example HTML
const heading = <h1>Hello, world!</h1>;
// Example component
const person = <Person name={p.name} address={p.addr} />;

// Example HTML
let heading = React.createElement("h1", null, "Hello, world!");
// Example component
let person = React.createElement(Person, {
 name: p.name,
 address: p.addr
});

function Person(props) {
 // props is { name: …, address: … }
}

Rendering with JS

Rendering with JSX

The Person component

Recall that our state is just the 3 color components. Where should this state live (step
4 in “Thinking in React”)? We need this information in the sliders, i.e., in
LabeledSlider, but also in ColorPicker to set the swatch color. Per the React
documentation: “Often, several components need to reflect the same changing data.
We recommend lifting the shared state up to their closest common ancestor.” Thus,
we will implement the state in the ColorPicker component (the closest common
ancestor).

That state then “flows down” to the labeled sliders as props to those components.
React components must act like pure functions with respect to their props. That is a
component can't modify its props (this enables efficient updates). To communicate
updates "back up" we supply a callback to the child that modifies the state in the
parent (the ”inverse” data flow or step 5 in Thinking in React).

Some important notes about modifying state:
• Do not modify state directly, instead use the setter.
• State updates may be asynchronous. React may batch updates, and so you

shouldn't assume the state has immediately changed after the call to the setter.

23

Props flow down, callbacks flow up
const [red, setRed] = useState(0);
... Single

source of
truth!

Props

Callbacks

Here is our ColorPicker component. When we talk about what a component renders,
we are talking about the components that are retuned

26

Putting it all together: the ColorPicker
function ColorPicker() {
 const [red, setRed] = useState(0);
 const [green, setGreen] = useState(0);
 const [blue, setBlue] = useState(0);

 const color = {
 background: `rgb(${red}, ${green}, ${blue})`
 };

 return (
 <div>
 <div className="color-swatch" style={color} />
 <LabeledSlider label="Red" value={red} setValue={setRed} />
 <LabeledSlider label="Green" value={green} setValue={setGreen} />
 <LabeledSlider label="Blue" value={blue} setValue={setBlue} />
 </div>
);
}

Here is our ColorPicker component. When we talk about what a component renders,
we are talking about the components that are retuned. Here we see an enclosing
<div> (a standard HTML component) with a child <div> for the swatch, and 3 child
React components, the LabeledSliders

27

Putting it all together: the ColorPicker
function ColorPicker() {
 const [red, setRed] = useState(0);
 const [green, setGreen] = useState(0);
 const [blue, setBlue] = useState(0);

 const color = {
 background: `rgb(${red}, ${green}, ${blue})`
 };

 return (
 <div>
 <div className="color-swatch" style={color} />
 <LabeledSlider label="Red" value={red} setValue={setRed} />
 <LabeledSlider label="Green" value={green} setValue={setGreen} />
 <LabeledSlider label="Blue" value={blue} setValue={setBlue} />
 </div>
);
}

At the top of the ColorPicker we define the three pieces of state, which are then
passed to their corresponding sliders as props (along with the callback function to
update the value). Every time React renders the color picker it will execute this
function to generate (updated) DOM.

28

Putting it all together: the ColorPicker
function ColorPicker() {
 const [red, setRed] = useState(0);
 const [green, setGreen] = useState(0);
 const [blue, setBlue] = useState(0);

 const color = {
 background: `rgb(${red}, ${green}, ${blue})`
 };

 return (
 <div>
 <div className="color-swatch" style={color} />
 <LabeledSlider label="Red" value={red} setValue={setRed} />
 <LabeledSlider label="Green" value={green} setValue={setGreen} />
 <LabeledSlider label="Blue" value={blue} setValue={setBlue} />
 </div>
);
}

Passing state as prop Passing a Callback as prop

In the process it will set the background color style based on the current values of the
color components.

JS note: This includes an example of a template literal where we dynamically
construct a string from JS variables.

Check out a demo of the complete implementation at:
https://codepen.io/lbiester/pen/VwJJdrq?editors=1010

29

Putting it all together: the ColorPicker
function ColorPicker() {
 const [red, setRed] = useState(0);
 const [green, setGreen] = useState(0);
 const [blue, setBlue] = useState(0);

 const color = {
 background: `rgb(${red}, ${green}, ${blue})`
 };

 return (
 <div>
 <div className="color-swatch" style={color} />
 <LabeledSlider label="Red" value={red} setValue={setRed} />
 <LabeledSlider label="Green" value={green} setValue={setGreen} />
 <LabeledSlider label="Blue" value={blue} setValue={setBlue} />
 </div>
);
}

JS Note: Template literal

Here is the labeled slider implementation: Note that we use “controlled” <input>
components. Controlled components are form elements with state controlled by
React. Uncontrolled components maintain their own state. The latter is the
way <input> elements naturally work (recall the “vanilla JS” color picker). The former,
“controlled”, is the recommended approach as it ensures there is only one source of
truth, the React state.

31

Forms (inputs) are implemented as
“controlled components”

function LabeledSlider({ label, value, setValue}) {
 return (
 <div>
 {label}
 <input type="range" min="0" max="255” value={value}
 onChange={event => setValue(parseInt(event.target.value, 10))}
 />
 {value}
 </div>
);
}

We set the <input> element’s value from state and provide an onChange (or other
relevant) callback to update that state in response to user input .

32

Forms (inputs) are implemented as
“controlled components”

function LabeledSlider({ label, value, setValue}) {
 return (
 <div>
 {label}
 <input type="range" min="0" max="255” value={value}
 onChange={event => setValue(parseInt(event.target.value, 10))}
 />
 {value}
 </div>
);
}

Input value determined
by React state (or props
derived from state)

Any change invokes
callback to update state (in

this case via callback
passed as a prop)

“Event Object” with event data

Each state change triggers a re-rendering that shows the changes the user just
initiated.

There are many of these potential "callback" props, like onChange, that are triggered
in response to specific events in the browser, like changing an inputs, hovering, etc.
We can learn more about them in the React documentation for the specific HTML
component: https://react.dev/reference/react-dom/components/input

That’s it! That is all we need to build the fully interactive color picker! Our more
complex applications are just these same ideas, this same "Thinking in React"
process, applied again.

33

Forms (inputs) are implemented as
“controlled components”

function LabeledSlider({ label, value, setValue}) {
 return (
 <div>
 {label}
 <input type="range" min="0" max="255” value={value}
 onChange={event => setValue(parseInt(event.target.value, 10))}
 />
 {value}
 </div>
);
}

Exploit React’s re-render loop to enable
interaction while maintaining a single-
source of truth (React’s state)

Render
state

Update
state
on every
input

JS note: This includes an example of destructing the single props object argument
into individual variables.

34

Forms (inputs) are implemented as
“controlled components”

function LabeledSlider({ label, value, setValue}) {
 return (
 <div>
 {label}
 <input type="range" min="0" max="255” value={value}
 onChange={event => setValue(parseInt(event.target.value, 10))}
 />
 {value}
 </div>
);
}

Exploit React’s re-render loop to enable
interaction while maintaining a single-
source of truth (React’s state)

Render
state

Update
state
on every
input

JS note: De-structure props object into variables

Answer: D

What’s different about 2? The other two are passing a function to be invoked in the
future when the button is clicked. While 2 is invoking the `setValue` function during
render and passing its result as the prop (not later when the click occurs). We
ultimately want to pass a function to the event handlers like onClick, onChange, etc.
This is a common error and often tricky to find (because the syntax is so similar).
Keep an eye out for messages suggesting something is happening before your
application is ready. That suggests a function intended as a callback is getting invoked
during (the initial) render, instead of later when an event occurs.

35

Which of the following are equivalent
and correct callback implementations?
1. <button onClick={() => setValue("Clicked")} >

2. <button onClick={setValue("Clicked")} >

3. const handleClick = () => setValue("Clicked");
...
<button onClick={handleClick} >

A. 1 only
B. 2 only
C. 3 only
D. 1 and 3
E. All

go/cs312-inclass

A key innovation in React is making that re-rendering process very fast. React
maintains a virtual DOM that represents the ideal state of the UI. Changing the
application state triggers re-rendering, which changes the virtual DOM (those
changes are fast since only the "virtual" DOM is changing). Any differences between
the virtual DOM and actual DOM (on the screen) are then reconciled to the bring the
actual DOM to the desired state. But only those elements that changed are updated
making this process more efficient.

Further, state updates may be asynchronous. React may batch updates. Thus, you
shouldn't assume the state has immediate changed after the call to the state setter.

Often re-rendering is sufficiently fast that we don’t need to worry about when and
how components are re-rendering. And that should be the starting point. If, however,
we observe performance problems (and only if we observe problems) we can
optimize the rendering behavior (avoid unnecessary re-renders). See the “read more”
links on the course web page for additional information about how re-rendering
works and how we could optimize when components re-render.

36

What is React doing behind the
scenes?

https://calendar.perfplanet.com/2013/diff/

Batched updates from virtual DOM
(fast) to actual DOM (slow) for just
those elements that have changed

Even our simple color picker started getting complex. As we tackle more sophisticated
applications, we will need approaches to manage/mitigate SW complexity. One
approach is *design patterns*.

Effectively, a design pattern describes those aspects of a problem and solution that
are the same every time (and thus can be DRY'd up!*). A design pattern is not a
particular class or library, it is a template. You will build up a "mental library” of these
templates over time. React is an implementation of design pattern for building
interactive UIs. The operations on the (virtual) DOM are the "part that is the same
everytime" and occur entirely "behind the scenes" within React. As a developer your
focus is just on rendering the desired UI. That is, you can focus on the part that is
different each time instead of the parts that are the same.

* DRY is an acronym for ”Don’t Repeat Yourself”, i.e., don’t duplicate code/work

37

Why React: Design patterns

The elements of this language are entities called patterns.
Each pattern describes a problem that occurs over and over
again in our environment, and then describes the core of
the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.

Christopher Alexander

In an even more general sense, React is trying to solve the problem of what do we
show the user (what should appear on the screen) in a graphical application and how
does that “view” change in response to user actions. A more general design pattern
for that problem is the Model-View-Controller pattern (widely used in web
applications, but also GUIs). MVC separates the data/resource (Model) from the
presentation (View) with the Controller. Generally, the controller manipulates the
model in response to user actions and presents the resulting model(s) for rendering
by the view(s). I say generally because there are many different implementations of
MVC, all of which have slightly different MVC roles. There are also other related
patterns like MVVM – Model View ViewModel that divide up responsibilities slightly
differently.

Where does React fit into this pattern? At a high-level, it is just the “V” (the view)
(although not all would agree with that characterization), with the server
(something we will talk about in subsequent classes) responsible for the C and M. The
reality is a little less clear cut. Our React components will have elements of V and C
(we have already seen that…). As with other design patterns, the value is in the ”core”
of the solution, that is thinking about how to separate/decoupling the roles of storing
the state of the application (the model), how we visualize that state (the view) and
how we modify the state of the application in response to user actions (the
controller). If we think about those roles explicitly, we are more likely to produce
“beautiful” code.

40

Design pattern: Model-View-Controller

Controller

View Model

User action

Update Notify

Update

In some frameworks, that decomposition is not so “optional”, that is the framework is
really built around this design pattern, and so we need to explicitly identify those
components of our application.

40

There are also anti-patterns, that is code that looks like it should probably follow
some design pattern but doesn’t. Such code is both the cause and result of “technical
debt”. Some symptoms of anti-patterns…

These are more specific manifestations of the tactical programming we discussed
previously and signs that complexity is winning (recall those signs were: change is
hard, high-cognitive local and unknown unknowns).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

42

Symptoms of anti-patterns, i.e., tactical
programming or a sign it’s going awry

• Viscosity
Easier to do a hack than do the “Right Thing”

• Immobility
Can’t DRY out functionality

• Needless repetition
• Needless repetition
• Needless complexity from generality

If we can’t answer those questions we don’t know if we are coming out ahead. What
if we are paying a cost, but not getting any benefit, that is paying for a solution to a
problem we don’t have.

Using a particular design pattern or abstraction (we can think of React abstracting
away the details of updating our UI in response to state changes) doesn’t
automatically make our software better, it only does so if it solves (and is a good fit
for) a problem we actually have. Our course webpage doesn’t use React. Why?
Because it is almost all static (no state to interactively update!)

How do we know if our problem is a good fit? As a start, we want to keep an eye out
for the anti-patterns we just discussed. A positive sign is that we are successfully
abstracting away unimportant details. The word unimportant is crucial (and
sometimes hard to define). In this context, we would describe the mechanics of
efficiently updating the DOM as unimportant. Another sign is that a good abstraction
will have a simple interface, but the functionality behind that interface is “deep”. The
interface for managing state with React is very simple, but the functionality behind
the rendering process is substantial (“deep”).

https://kentcdodds.com/blog/how-to-react
Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition

43

Design patterns (or abstractions):
Moderation in all things

Two key questions:
1. What is benefit of this pattern (abstraction)?
2. What is the cost of this pattern (abstraction)?

What are repeated elements? The DistanceEntry. There are 4 such components that
are very similar. These are composed within the parent UnitConverter.
What is the state? There is just one piece of state, the distance (in some units). All
other distances reflect that same underlying information.
Where does that state live? Since it is needed in all the DistanceEntry components, it
needs to live in the nearest common ancestor, UnitConverter. It would then flow
down as a prop to each DistanceEntry. UnitConverter would pass a callback for the
child DistanceEntry components to update that state.
Are these 4 distanct components, or 4 instances of the same component? Likely the
latter. No need to repeat the functionality. We can pass the label as a prop (like we
did for labeled slider), along with appropriate expressions/functions for updating the
distance. Why would that be preferrable? Fewer components to develop and test!

44

How would you decompose this unit
converter component?

1miles

1.609km

5280feet

1609meters

Changing one distance should change all the others
accordingly

