
1

(Initial) due dates in the next week

• Tonight: practical 3, assignment 2
• Next Thursday: practical 4, assignment 3



Recall when we talked about debugging, we noted one of the key steps was 
visualizing the errors. We can do so with the React developer tools (if you haven't 
installed that extension, now is a good time to do so). It allows you view the 
Component hierarchy, view hooks, view and modify props, etc. With the profiler tab, 
we can view what re-rendered and when. Like many tools we use, the DevTools are 
very powerful, and we will only scratch the surface. But if you find yourself chasing a 
bug in your React code it can be a powerful tool.

2

Debugging our applications with React 
DevTools*

*Install Chrome, Firefox extension

1. Open browser's developer tools

2. Select "Components" tab

3. Find component to 
inspect/modify props, state 
hooks, etc.

4. Use "Profiler" to see what 
rendered, why and when



3

Testing a React application?

• Testing a React application isn’t conceptually 
different than testing any other code
Provide an input to the application and assert the 
output matches your expectation

• The difference is that some of those inputs are 
user actions, and the outputs are often UI
A challenge is describing the relevant inputs and 
expected outputs



Here are some the properties we might want to verify in our UI… The latter two 
include both making assertions about what is shown in the browser and 
incorporating user interactions (i.e., our test involves “clicking”). How could we do 
so?

When we talked about the need for tests to be “self-checking””, this is where 
that starts getting trickier. How do we test if it looks right? The simple answer 
is that we just open it up and look. We press buttons. But now we can’t 
automate the process. A human must sit in front of a screen and sign off on it. 
This is slow, the tester must remember all the things that could be an issue 
with the interface, and test isolation is harder.

So, we need to automate assertions about the DOM and interaction. To do so 
we will need more than the tools we have used so far. There are several 
different solutions, but here we will use the library recommended by the 
React team: React Testing Library.

4

Testing React: An example

How do we test?
1. That the order is correct
2. Opening and closing the detail view
3. Clicking on the stars updates rating
4. …



As a quick reminder, we talk about tests in the context of this hierarchy.  All these 
levels are still relevant to testing our React applications. But we also have some new 
static (or semi-static) tools. 

• End-to-end testing will run our entire application (including server) and interact 
with the application just like a user would. There are number of tools designed for 
this purpose. These tools enable you to automatically “click” and make assertions 
about the results. These tools will often use a “headless” browser behind the 
scenes.

• Integration tests will render some or all of the front-end application and typically 
include some interaction, i.e., clicking on a button. We will typically mock network 
requests and other functionality to ensure our tests are F.I.R.S.T.

• Unit tests to verify helper functions or other tricky UI. The distinction between unit 
tests and integration tests is fuzzy. We might think of unit tests as those tests that 
only test a single component in isolation.

Typescript is typed “version” of Javascript that is compiled (really transpiled) into 
standard Javascript. flow is a tool for annotating JavaScript with types that seems to 
have been largely displaced in favor of Typescript. As an aside, we considered 
introducing TS in the class, but decided against stuffing one more thing in an overful 
class. Instead, we will use PropTypes. PropTypes are more narrowly applied than 
either of the other; PropTypes allow us to specify the types of the props passed to 

5

Recall: Our test hierarchy

Kent C Dodds “Write tests. Not too many. 
Mostly integration.”

• Typescript (or Flow) 
annotations

• Linter
• PropTypes (dynamic)

(+ dynamic)

https://blog.kentcdodds.com/write-tests-not-too-many-mostly-integration-5e8c7fff591c
https://blog.kentcdodds.com/write-tests-not-too-many-mostly-integration-5e8c7fff591c


our React components and check those types during development. We will start 
there…

https://kentcdodds.com/blog/unit-vs-integration-vs-e2e-tests

5



Here is an example of PropTypes for the slider in the ColorPicker. You see we are 
specifying the expected types for the props (and whether they are required). We will 
see warnings if props don’t match these specifications, [click]

Validation isn't the only purpose for providing `PropTypes`. Doing so is also a way of 
documenting the "type signature" of the component (analogous to a function 
signature in a statically typed language). That is, we can think of PropTypes as a form 
of “self-checking” documentation (i.e., it serves both the document the expected 
types and help enforce/check those types).

Note that PropTypes are less commonly used now in favor of Typescript. And as I 
mentioned we considered but decided not to use TS. Whether we use PropTypes or 
TS, part of the value is thinking through and clearly defining the expected types for 
our props. What do I mean by that? Do any of these types seem questionable to you?

Yes, the fact that value can be a string or a number, [click] That we (need to) allow 
two different types is a sign that we should probably revisit our design to make the 
implementation more consistent.

6

PropTypes in action

LabeledSlider.propTypes = {
  label: PropTypes.string.isRequired,
  value: PropTypes.oneOfType([
    PropTypes.string,
    PropTypes.number,
  ]).isRequired,
  setValue: PropTypes.func.isRequired,
};

Catch errors and document component “signature”

Bit of a “code smell”

https://www.npmjs.com/package/prop-types



Answer: D

Since we are using submit like a function in a callback, it is likely a function. 

7

What is the expected type of the submit prop?

A. string
B. object
C. number
D. function

function NameForm({ record, submit }) {
 const [name, setName] = useState(record ? record.name : '');
  
 const handleName = (event) => { setName(event.target.value); };

 return (
  <div>
   <input type="text" value={name} onChange={handleName} />
   <button onClick={() => submit({...record, name: name})>Submit</button>
  </div>
 );
}

used like a function



What are the full prop types for this component? <click> By 
reviewing this code, we can make inferences about the props and 
thus what types to specify. <click> Here we specify that record 
is an optional object and submit a required function. How did 
we make that inference?
• Record can be falsy and has a property name
• We set name with a string, suggesting that properties type
• Submit is used like a function and doesn't have a provision 
for being null/undefined.

Note that if a prop is optional, as record is here, we want to 
specify a default value (even if that default value) is just 
null. ESLint can warn you about missing default props. 

A couple bits of syntactic sugar at work:
• Destructuring to ”split” props object into its component properties in the function 

definition.
• Spread operator to create a new record object (the …record) 
part and then overwrite that with a new value for the name 
property.

8

Prop Types for this component?

function NameForm({ record, submit }) {
 const [name, setName] = useState(record ? record.name : '');
  
 const handleName = (event) => { setName(event.target.value); };

 return (
  <div>
   <input type="text" value={name} onChange={handleName} />
   <button onClick={() => submit({...record, name: name})>Submit</button>
  </div>
 );
}

NameForm.propTypes = {
 record: PropTypes.shape({ name: PropTypes.string }),
 submit: PropTypes.func.isRequired,
};
NameForm.defaultProps = { record: null };

Optional object with at least name property

Required callback function



What are the full prop types for this component? <click> By 
reviewing this code, we can make inferences about the props and 
thus what types to specify. <click> Here we specify that record 
is an optional object and submit a required function. How did 
we make that inference?
• Record can be falsy and has a property name
• We set name with a string, suggesting that properties type
• Submit is used like a function and doesn't have a provision 
for being null/undefined.

Note that if a prop is optional, as record is here, we want to 
specify a default value (even if that default value) is just 
null. ESLint can warn you about missing default props. 

A couple bits of syntactic sugar at work:
• Destructuring to ”split” props object into its component properties in the function 

definition.
• Spread operator to create a new record object (the …record) 
part and then overwrite that with a new value for the name 
property.

9

Prop Types for this component?

function NameForm({ record, submit }) {
 const [name, setName] = useState(record ? record.name : '');
  
 const handleName = (event) => { setName(event.target.value); };

 return (
  <div>
   <input type="text" value={name} onChange={handleName} />
   <button onClick={() => submit({...record, name: name})>Submit</button>
  </div>
 );
}

Two props named record, submit
Record can be “falsy”, and has 
a property name

submit used like a function

The name property looks to be a string

NameForm.propTypes = {
 record: PropTypes.shape({ name: PropTypes.string }),
 submit: PropTypes.func.isRequired,
};
NameForm.defaultProps = { record: null };

Optional object with at least name property

Required callback function



Recall that each level of testing has tradeoffs. Typically, the higher levels have 
increased complexity and more points of failure (i.e., the test can fail in many ways) 
but offer increased confidence the application works (because you are testing all the 
pieces). The ultimate mix of testing, and what “level” you call it doesn’t matter as 
much is that you build confidence in your application.

10

Recall: Testing is ultimately about 
confidence

We test to build confidence:
• That our application works as intended, and 
• Keeps working as intended, even when we 

make changes
Our goal is maximum confidence!

https://kentcdodds.com/blog/unit-vs-integration-vs-e2e-tests



Recall our focus is on agile development methods, which are all about short 
development cycles that improve working (but not yet complete) code. To that end 
we will practice test-driven development in which we write the tests first, then 
implement the code that passes those tests. TDD is equally applicable for testing our 
React applications as it was in testing ”regular” JS code…

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license.

11

Recall: Test-driven development (TDD)
• Think about one thing the code should do 
• Capture that thought in a test, which fails
• Write the simplest possible code that lets the test 

pass
• Refactor: DRY out commonality w/other tests
• Continue with next thing code should do 

Red – Green – Refactor
Aim to “always have working code”



12

What do we need to test a React 
application?

1. Ability to ‘render’ components (and execute 
any hooks)

2. Simulate user actions
3. Find and make assertions about what is 

rendered (before and after those actions)



[after] The idea here is that tests should only perform user actions and only 
make assertions about content that is shown on the screen.

To understand the contrast, there are other libraries, like Enzyme, which give 
us more control. They “know” React and we can test components (i.e., we 
can directly query their props and state — though hooks make the latter more 
problematic). The problem is that users don’t see props and state, they see 
the list of titles changing when the section changes.

Recall that Kent C. Dodds is the one who thought we should focus on 
integration testing (so maybe this view isn’t that much a surprise).

The React Testing Library is built on top of the DOM Testing library. They 
realized when they stripped away all the low-level implementation details, that 
they essentially had a framework for testing dynamic websites, full stop. So, 
they now support six or seven different component frameworks. That 
“support” basically extends to a couple of functions that handle rendering the 
DOM virtually from components in the various libraries. 

13

(React) Testing Library (RTL)

• Test DOM nodes (what is shown by browser), 
not components

• Tests should work the way the application is to 
be used

“The more your tests resemble the way your software 
is used, the more confidence they can give you.”

-Kent C. Dodds

https://testing-library.com/docs/guiding-principles



Like cleanup, we won’t need to use act very often. Most of the Testing Libraries 
helpers are already wrapped in an act() function. 

RTL: Rendering
render(component)

Performs a virtual render of a React component

Returns an object containing the rendered component, a rerender
function, and query properties

rerender(component)
Returned by render, used to change props on a mounted component

cleanup()
Unmount React trees (this is handled for us by Jest)

act()
Wrapper around React act() function; makes sure React tasks are 
complete



We have three variants of the queries we can run on the DOM. The star represents 
that are there of many of versions of the variants that differ based on what they are 
“getting”, ”querying” or “finding”.

The behavior for each is subtly different. If a component should be on the page, get is 
a good choice. The test will fail before you get to the assertion (but you will get a 
more helpful message showing what was actually present). If you are testing for non-
existence, then use query as it doesn't throw an error if the query is not present. The 
find matcher is good for picking up on components that should appear based on 
some interaction, and particularly components that will appear some time in the 
future after an action/interaction

In general, the singular variant will throw an error is the query returns more than one 
component.

RTL: Find components part 1, variants

getBy* or getAllBy*
Queries the DOM for the first matching node or array of 
matches, throwing error if none (or more than one for the 
singular variant) are found

queryBy* or queryAllBy*
Queries the DOM for the first matching node or array of 
matches, returning null or empty [] if none are found

findBy* or findAllBy*
Returns a Promise which resolves when a matching node(s) is 
found, throwing an error after 1000ms if none are found

A query is a variant + a type, e.g., queryByText() or findAllByRole



These are three completions to the queries. There are several others like ByLabel or 
ByTitle, but I have found that I stick primarily to these. 

By role is an interesting one, because it taps into the accessibility features of the 
DOM. Certain DOM elements have a generic role, e.g., button. We can use elements 
for roles, and provide accessibility labels that communicate their intended role, which 
can be accessed by this query. That can help decouple the test from the specific 
implementation, i.e., we care if there is something that can be used as a button, not 
whether it is specifically a button component.

RTL: Find components part 2, types

• *ByText
Search for an element based on the text contents of the 
node

• *ByRole
Search based on the role of the component (e.g., 
listitem, button, textbox) and other properties

• *ByTestId
Search for specific components based on data-
testid property (basically the cheat code and not 
really in the spirit of the library)

A query is a variant + a type, e.g., queryByText() or findAllByRole



Imagine our components generated the following DOM (HTML). We would want to 
make some assertions about the submit button (e.g., maybe it should be disabled 
until someone checks the box). To do so we first need to query it on the page. How 
could we do so? Let’s start with the simplest variant, get. And then think about 
different types, e.g., ByText, ByRole or ByTestId. How could we use those types to find 
this button?

The link is to a very cool site that helps you define queries based on the DOM you 
have, i.e., you paste in HTML and it makes suggestions about the queries!

17

<div>
  <label for="email">Email address</label>
  <input type="email" id="email" placeholder="Enter email" />
</div>
<div>
  <label for="password">Password</label>
  <input type="password" id="password" placeholder="Password"/>
</div>
<div>
  <label for="terms">
    <input type="checkbox" id="terms"/>
    <span>
      I accept the terms and conditions
    </span>
  </label>
</div>
<div>
  <button type="submit">Submit</button>
</div>

How could we 
find this button?

screen.getByRole('button', { name: /submit/i })

screen.getByText("Submit")

https://testing-playground.com

Rendered in the browser:



18

Figuring out the queries: An approach

test("…", () => {
    render(<Component … />);
    screen.debug(); // Print DOM to screen
})

1. Insert debug call to print DOM

2. Copy DOM into testing-playground.com

3. Pick element of interest 

4. Suggested queries



Once we have the DOM element, we need to make an assertion. The testing library 
provides some custom matchers in the jest-dom package (an extension to Jest that 
adds matchers (assertions) relevant to the UI). In our previous example, we could use 
the toBeDisabled matcher to assert the button is disabled until we check the box to 
agree to the terms and conditions. To do the latter we will need a way to simulate the 
user interaction.

Assertions/matchers
• toBeDisabled
• toBeEnabled
• toBeEmpty
• toBeEmptyDOMElement
• toBeInTheDocument
• toBeInvalid
• toBeRequired
• toBeValid
• toBeVisible
• toContainElement
• toContainHTML
• toHaveAttribute
• toHaveClass
• toHaveFocus

• toHaveFormValues
• toHaveStyle
• toHaveTextContent
• toHaveValue
• toHaveDisplayValue
• toBeChecked
• toBePartiallyChecked
• toHaveDescription

https://github.com/testing-library/jest-dom

https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom
https://github.com/testing-library/jest-dom


We do that with…

RTL: Actions

• fireEvent.type(component, event 
properties)
Simulate user interaction where type is any kind of 
HTML event: click, change, drag, drop, keyDown, 
etc…



Why the first step? Without it how do we know the action caused any change. What 
if the component was previously in the expected state. While steps 4 and 5 are not 
strictly necessary, it is good practice, especially for ”toggling”-like behaviors.

21

General behavioral testing pattern

1. Test that we are in the initial state
2. Initiate an action that should change state
3. Test that we are in the new state
4. [Initiate action to return state to original]
5. [Test that we are in original state]



[at the end] What is async and await? These are tools for managing asynchronous 
computations, and particularly to enable an imperative style to working with 
Promises. Let’s talk about those more…

22

Example from Simplepedia

test('Clicking on a section displays titles', async () => {
  const selectFunction = jest.fn();
  render(<IndexBar collection={articles} setCurrentArticle={selectFunction} />);
  const section = await screen.findByText(sampleSections[0]);
    // Pre-condition assertions omitted…
  fireEvent.click(section);

  const titles = await screen.findAllByTestId('title');
  const expectedArticles = articles.filter(
   (article) => article.title.charAt(0).toUpperCase() === sampleSections[0]
  );
  expect(titles).toHaveLength(expectedArticles.length);
  expectedArticles.forEach((article) => {
   expect(screen.getByText(article.title)).toBeVisible();
  });
 });

1. Render the component (with 
mock function as prop) 2. Find the section

3. “Click” on the section

4. Find all the titles 5. Assert expected titles are shown



[at the end] What is async and await? These are tools for managing asynchronous 
computations, and particularly to enable an imperative style to working with 
Promises. Let’s talk about those more…

23

Example from Simplepedia

test('Clicking on a section displays titles', async () => {
  const selectFunction = jest.fn();
  render(<IndexBar collection={articles} setCurrentArticle={selectFunction} />);
  const section = await screen.findByText(sampleSections[0]);
    // Pre-condition assertions omitted…
  fireEvent.click(section);

  const titles = await screen.findAllByTestId('title');
  const expectedArticles = articles.filter(
   (article) => article.title.charAt(0).toUpperCase() === sampleSections[0]
  );
  expect(titles).toHaveLength(expectedArticles.length);
  expectedArticles.forEach((article) => {
   expect(screen.getByText(article.title)).toBeVisible();
  });
 });



As a reminder, asynchronous in this context means that actions may occur some 
indeterminate amount of time in the future, either because we are waiting on an 
external resource like the network, or we are waiting for the relevant callback to get 
executed by the event loop. In the case we want to use that value for a subsequent 
computation, how do we know when it is ”ready”?

24

Recall: The browser is asynchronous

DOM

AJAX

Timeout

Web APIs

Callback Queue

Event Loop



One tool is a Promise.

A Promise is a proxy for a value not necessarily known when the promise is created. 
It allows you to associate functions to be executed with an asynchronous action's 
eventual success value or failure reason. This lets asynchronous methods return 
values like synchronous methods: instead of immediately returning the final value 
(which isn’t yet known), the asynchronous method immediately returns a promise to 
supply the value at some point in the future. We can then pass that Promises around 
as needed.

We can think of a promise is being one of several states. Initially it is "pending", the 
value is not yet known. It can then fulfill with a value or reject due to an error. At that 
point, the relevant function is invoked (provided to `then` on success or provided to 
`catch` on failure).

25

A promise is a proxy for a value not yet 
available…

MDN

A common action is to update state

The “next” promise will be fulfilled 
with the result of the then handler

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise


The "traditional" way to handle asynchronous execution is via callbacks. We provide a 
function to execute when the result (or error) is available. If we want to perform a 
series of operations in sequence using results of previous asynchronous operations, 
we nest the callbacks. 

[click]. Promises help us flatten a deeply nested set of callbacks into a linear chain of 
promises. someAsyncOperation returns a promise. We register a 
function with `then` to execute when it is fulfilled. What does 
`then` return? Also, a promise. Why? Recall, a promise is a 
proxy for a value not yet known. If the input to a `then` is 
not yet known, then its result must also not yet be known (and 
so on, down the chain). When that first value is fulfilled and 
the first handler is executed ("Do something with the result"), 
that second promise will be subsumed by the promise returned by 
newAsyncOperation. When it fulfills, ”Do something more” will 
execute. If at any point if there is an error, execution will 
skip the rest of the chain to execute the error handler.

Despite what it may seem like at the moment, the linear chain 
is much easier to reason about, especially in the case of 
errors (which can be picked up by single error handler at the 
end). 

26

Promise vs. callbacks
someAsyncOperation(someParams, (result, error) => 
  // Do something with the result or error
  newAsyncOperation(newParams, (result, error) => {
    // Do something more...  
  });
});

someAsyncOperation(someParams).then((result) => {
  // Do something with the result
  return newAsyncOperation(newParams);
}).then((result) => {
  // Do something more…
}).catch((error) => {  // Handle error});

Flatten nested structure into a chain:



If instead of executing steps in sequence, you want to execute a set of synchronous 
operations in parallel, use:
Promise.all: If you care when they are all fulfilled
Promise.race: If you just care when the first Promise fulfills/rejects

26



A Promise chain is a common source of confusion. Let’s rewrite in into more discrete 
steps. 
• prom1, prom2 are effectively defined immediately, that is someAsyncOperation 

and the `then` method return immediately with promises that will be resolved in 
the future.

• Thus, presumably before someAsyncOperation has completed, we start executing 
“Do something after”

• In the meantime, someAsyncOperation is executing. When it completes, the 
promise resolves with the result and we invoke the first `then` callback. It launches 
newAsyncOperation and returns a promise that will eventually resolve with its 
result. That newly returned promise subsumes the original prom2.

• When that second promise resolves we execute "// Do something more.

27

Pending

Fulfilled

prom1

Execute
newAsyncOperation(newParams);

result

Pending

Fulfilled

prom2

Pending

Execute
// Do something more

result

const prom1 = someAsyncOperation(someParams)
const prom2 = prom1.then((result) => {
  // Do something with the result
  return newAsyncOperation(newParams);
});
prom2.then((data) => {
  // Do something more
})
// Do something after

Execute
// Do something after

Ti
m

e

someAysncOperation

newAsyncOperation



Answer: D

The wait function returns immediately with a promise. Thus, the final console log 
executes first, and after 3 seconds the first promise resolves and we print “Delay 1”. 
The original promise return by the `then` method is replaced by the promise return 
from wait(4), which will ultimately resolve 4 seconds in the future. However, nothing 
is “listening” for that promise to be fulfilled. The only listener is remaining is the 
catch. Since there is no error, we don’t end up executing the catch statement (no 
error to handle), and thus don’t print Delay 2.

29

Assume the function wait(sec) returns a 
promise that resolves in sec seconds. What is 
the output of the following code? 
const current = Date.now();
wait(3).then(() => {
  console.log(`Delay 1: ${Date.now() – current) / 1000)}s`);
  return wait(4);
}).catch(() => {
  console.log(`Delay 2: ${Date.now() – current) / 1000)}s`);
});
console.log(`Delay 3: ${Date.now() – current) / 1000)}s`);

A B C D E

Delay 1: 3s
Delay 2: 7s
Delay 3: 7s

Delay 1: 3s
Delay 3: 4s

Delay 1: 3s
Delay 3: 7s

Delay 3: 0s
Delay 1: 3s

Delay 3: 0s
Delay 1: 3s
Delay 2: 7s



We noted that Promises ”linearize” dependent actions. In that sense Promises seems 
more “imperative”. In imperative code, the order of statements specifies the order of 
execution, i.e., each statement executes to completion before the next. The async 
and await keywords provide syntactic sugar for applying that style even more clearly 
to Promises. The “await” pauses execution until the promise returned by the await-ed 
expression has resolved, that is the Promise needs to have resolved before execution 
can proceed to the next statement (like imperative code). [the body of the then 
becomes the statements after await…]

We noted earlier that there is no way to “stop” a Promise chain and switch back to 
synchronous imperative code. That is true and still true (regardless of how it may 
appear). We should remember async/await are just syntactic sugar over Promises 
(i.e., async/await can be directly translated back to ”raw” Promises) and that 
execution is still fundamentally asynchronous.

To that end, what is the return value of an async function? Always a Promise. Even if 
the returned value is not explicitly a Promise, i.e., the function returns a string, it will 
implicitly be wrapped in a Promise. Why? Because the operations are still 
fundamentally asynchronous, and we don’t when in the future the function body will 
complete.

I suspect this is a 🤯 moment. I am with you. We will revisit Promises several times 

30

async/await: A more “imperative” 
approach to asynchronous code

test("…", () => {
  …
  screen.findByText(sampleSections[0]).then((section) => {
    fireEvent.click(section);
    return screen.findAllByTestId('title’);
  }).then((titles) => {
    …  
  });
});

test("…", async () => {
  …
  const section = await screen.findByText(sampleSections[0]);
  fireEvent.click(section);
  const titles = await screen.findAllByTestId('title’);
});

“Imperative” style



and learn about different asynchronous operations. Our goal today is to introduce 
some of the tools and techniques we will need for testing out React applications.

30



Behind the scenes the “find(All)By” is a wrapper around another function, waitFor. It 
is repeatedly re-running the query, in this case for elements with a specific test-id, 
until either it succeeds, or timeouts. That way we can test for elements, in this case 
like the titles, that may not appear immediately due to asynchronous implementation 
(maybe it needs to fetch the relevant data).

31

Why async/await in our tests? The UI 
might not change immediately

test('Clicking on a section displays titles', async () => {
  const selectFunction = jest.fn();
  render(<IndexBar collection={articles} setCurrentArticle={selectFunction} />);
  const section = await screen.findByText(sampleSections[0]);

    // Pre-condition assertions omitted…
  fireEvent.click(section);

  const titles = await screen.findAllByTestId('title');
  const expectedArticles = articles.filter(
   (article) => article.title.charAt(0).toUpperCase() === sampleSections[0]
  );
  expect(titles).toHaveLength(expectedArticles.length);
  expectedArticles.forEach((article) => {
   expect(screen.getByText(article.title)).toBeVisible();
  });
 });

The action may not immediately change the UI 
(need to update state, then re-render)

“Pause” test to wait till the expected 
components appear in the DOM


