
We could absolutely assemble all of these technologies ourselves, but that is a lot of
work (and a lot decisions for which we many not have enough information to have an
informed opinion). Instead, we are going to use frameworks that wrap around React
that have already integrated many (most?) of the tools we need to get started.

1

We rarely start from scratch

There is a lot that goes into standing up a
modern single page application (SPA)
• React, itself
• Bundlers and transpilers
• CSS-related tools
• Router
• Test tools, linter, …
• And much more (10-100s of dependencies…)

React just provides the component system. We will be using Next.js to manage
development and some of our server functionality. We can think of Next.js as
providing a more full featured (and opinionated) setup around React. Instead of use
choosing among and integrating this functionality on our own, Next.js has done so
already. Next.js is not the only way to setup a React application (our course previously
used CreateReactApp), and as with some of our other tools you/we may not agree
with some of the choices made by the Next.js developers. However, it provides a
robust starting point with many best practices built in.

This is a partial list of the features listed on the Next.js front page (primarily the ones
that are interesting to us). While we won’t necessarily care about the speed boost
from the server-side pre-rendering, it is a major feature of the framework, so it
merits notice.

You have already been using Next for some of the initial practicals and assignments.
We are going to start to dig into its features a bit more…

The marketing slide
• Zero config

– Bundles Webpack and Babel
– Scripts for building and exporting sites

• File system-based routing
– Files become client-side routes

• Built in development server with hot reloading
• Server-side page pre-rendering

– Build time (SSG) and request time (SSR)

• Support for multiple styling solutions
– e.g., CSS modules

• API Routes
– Add service APIs without writing an entire custom server

https://nextjs.org/

Will will typically be cloning an existing repository so that I can provide starter code,
i.e., I typically already did step 1…

We will typically not do steps 4 and 5 locally, but instead those steps will be
integrated into our deployment workflow.

3

Typical Next.js workflow

1. Clone existing application repository
or npx create-next-app my-app to create a new
application

2. Install dependencies with npm install
3. Run development server with npm run dev

– Website available at http://localhost:3000
– Changes will appear automatically when you save

4. Build site for production with npm run build
5. Run the site in production mode with npm start
6. (If setup) Run tests with npm test, linter with npm

run lint

http://localhost:3000/

This is the structure that you will see for our applications, where all the “code” is
contained in the “src” directory.

Next uses a very specific directory structure, with functionality dependent on file
location/naming. This is an example of “convention vs. configuration”. That is by
sticking to certain conventions we don’t have to explicitly configure our application
(i.e., specify in a configuration file somewhere the location of the code). Only atypical
situations require explicit configuration (to override the convention). This is a
common approach for web frameworks where the goal is to make the typical case
easy.

One caveat for Next, is that the directory structure is evolving quite a bit and so you
might see different setups. Specifically, this was not the original default setup, and
there is now a newer "app" directory that we won't use (we are specifically not using
the most recent version of Next).

Let’s dig into that “src” directory a bit more…

5

Our typical Next folder structure
my-app/
 README.md
 node_modules/
 package-lock.json
 package.json
 public/
 favicon.ico
 src/
 components/
 pages/
 _app.js
 index.js
 api/
 styles/
 globals.css
 Home.module.css

NPM package infrastructure
(present in every npm packge)

All JS and CSS files. Most your
work will happen in here.

Static assets (e.g., images)

Components contains React components used in (potentially many) pages. These
components may be used anywhere in our application. We separate them out to
facilitate that reuse. For example, our “in-class” tool is a Next application. The same
poll component is re-used in all the different interfaces (participant, instructor, and
the view layered on the screen…).

The pages directory describes separate “pages” in our application, with the “api” sub-
directory implementing code that runs exclusively on the server not the browser. We
will talk more about that aspect later in the semester.

The notion of multiple pages seems to conflict with the idea of the single page
application (SPA). It is a recognition that most SPAs still have distinct views and that
the URLs (which we can link to, move between with the browser’s back/forward
button) are a helpful tool for managing those views. So, we use those tools,
specifically the browser history to maintain state for us. We can use the URL to
determine which component we want to show on the screen at any one time ,
effectively treating the URL like other forms of application state! Behind the scents,
the router is loading new components based on the URL without actually reloading
the page, as in a traditional web application. This enables the interactivity (and
statefulness) of an SPA, with the familiar interaction mechanics of a multiple page
application (e.g., we can link to specific views in our application).

6

Our typical Next folder structure
my-app/
 README.md
 node_modules/
 package-lock.json
 package.json
 public/
 favicon.ico
 src/
 components/ // Sub-components
 pages/
 _app.js // Root component
 index.js // Homepage
 api/ // API routes
 styles/
 globals.css
 Home.module.css

The pages directory is another example of convention over configuration. When we
navigate to a URL, e.g., http://domain/articles/42/edit, Next.js will render the
components in the associated file based on the directory structure in pages (i.e., the
router is determined by the directory convention not a configuration file somewhere
that maps routes to components). In some cases, the files define static routes, e.g., a
fixed mapping between names and files. In others the routing is dynamic, that is
multiple routes map to the same file, with part that varies extracted as a variable.
These are indicated by the square brackets of various kinds. [click]. In this example,
that variable is named id.

Specific examples shown here (see documentation for more info).
[[…id]], Optional catch all route, e.g., will match /, /a, /a/b, …, assigning an array to id
[id], Match route and assign to id

Note more specific URLs take precedence, that is why /articles/42/edit matches as
shown instead of the catch all.

When the component is rendered by Next, we can access the router (the
functionality that selected the component) to obtain the variable and other
information, e.g., the extract the id variable for use in the application. We can also
use the router to switch between components, e.g., to switch articles by “navigating”
to say /articles/26 (article with id 26). We say “navigate”, but that is not really what is

8

(Dynamic) routing in Simplepedia
src/pages/
 _app.js
 index.js // http://domain/
 articles/
 [[...id]].js // http://domain/articles/42
 [id]/
 edit.js // http://domain/articles/42/edit
 edit.js // http://domain/edit

Value in URL
becomes id variable

https://nextjs.org/docs/routing/dynamic-routes

function Component() {
 const router = useRouter();
 const { id } = router.query;
}

For:
http://domain/articles/42/edit
id will be 42

happening. In practice, we are programmatically adding an entry to the browser
history and updating the router state to (re)render the correct component, with the
new URL and associated variables.

Check out documentation: https://nextjs.org/docs/routing/dynamic-routes

8

To better understand the role of client-side routing, it can be helpful to think about
how we could accomplish that same tasks without. In assignment 3 you are adding an
editor and “editing” mode to create or update articles. That is, we can think about
the application having at least two modes “viewing” and “editing”. We could
determine the mode with an additional piece of state, mode. And the combination of
mode and currentArticle, encode whether you're creating a new article or editing an
existing article.

This is totally workable (and indeed was how previous versions of Simplepedia were
designed). The tradeoffs are we can’t directly link to relevant pages from outside,
e.g., send someone a link to a specific article or to creating new articles. And the “top
level” component that contains the conditional can get very complex.

In the client side-routing, the ”mode” is implicit in the URL and the conditional is
implemented by the router and the directory structure we created.

9

What does client-side routing replace?

function Component() {
 const [mode, setMode] = useState("view");
 const [currentArticle, setCurrentArticle] = useState();
 if (mode === "view”) {
 return <Viewer ... />;
 } else if (mode == "edit") {
 // Editing article if currentArticle defined
 return <Editor currentArticle={currentArticle} />;
 }
 …
}

We can include a static CSS file as an asset, i.e., the traditional approach. But this
approach is not very modular and doesn’t necessarily work well with a component-
based design. CSS has a single global name space. We would have to merge the styles
for all components into the global file, even components we didn’t write ourselves,
and hope there no conflicts.

We can “import” CSS files (using features of Webpack to bundle that CSS into the
JavaScript file) for each component. This eliminates the need to combine our CSS files
but doesn’t resolve issues with having all classname is a single, global, namespace.
There are still many opportunities for naming collisions. So not a great fit for truly
modular components. CSS modules are essentially a scoped version of importing css
into the module that address thar issue (by automatically extending the class names
with unique identifiers, checkout your applications in the browser developer tools).

CSS-in-JS integrates styling into the components as JavaScript code (similar to our
color picker example in which we created the background color style in the code, but
with many more features, like dynamically changing styles, using swappable themes,
etc).

Styling approaches in Next.js

• Static CSS files
global.css

• Import CSS files like code
import "./styles.css"

• CSS modules
import style from "./ColorPicker.module.css"

• CSS-in-JS

The difference as noted is that it will create a class name like:
ColorPicker_colorSwatch__Lu74p

11

Global styling vs. CSS modules
function ColorPicker() {
const [red, setRed] = useState(0);
const [green, setGreen] = useState(0);
const [blue, setBlue] = useState(0);

const color = {background: `rgb(${red}, ${green}, ${blue})`};
return (
<div>
<div className="colorSwatch" style={color} ></div>
<LabeledSlider label="red" value={red} setValue={setRed}/>
<LabeledSlider label="green" value={green} setValue={setGreen}/>
<LabeledSlider label="blue" value={blue} setValue={setBlue}/>

</div>
);

}

.colorSwatch {
 width: 100px;
 height: 100px;
 border: 1px solid black;
}

import styles from './ColorPicker.modules.css’
…
<div className={styles.colorSwatch} style={color}>

Separation of Concerns (SoC) will be a recurring topic this semester, but in short, SoC
is a design principle that each “unit” in a program should address a different and non-
overlapping concern.

In this context, a common SoC argument around HTML/CSS is that HTML should
specify content (only) and CSS should specify the style (only), i.e., separate style from
content. Proponents of CSS-in-JS also make a SoC argument, but that one component
should be entirely separate from the others.

12

Really a debate about separation of
concerns (SoC)

HTML is content (only),
CSS is style (only)

Each component should
be separate

SoC is a design principle that each "unit" in a
program should address a different and non-
overlapping concern

https://en.wikipedia.org/wiki/Separation_of_concerns

As we will see later in the semester, the combination of component libraries and CSS-
in-JS is common and powerful solution. In a later practical we will modernize the
Simplepedia UI using the Material UI framework. In this approach we are using a set
of pre-built components, with their associated CSS, for common UI elements (like the
button) bar. We can further customize the look with CSS-in-JS. The result is we can
quickly stand-up a very modern-looking interactive UI, with the con that it may look
like the rest of the web…

13

CSS in practice? Component libraries

