
1

Upcoming Due Dates

• Tomorrow (Friday): Sprint 0 Deliverables
– Please see the sprint 0 page on website for details
–Make sure that CRC cards/storyboards are visible

in your backlog so that I can review them!
• Next Thursday: Practical 7
• Next Friday:

FINAL DEADLINE for Assignments 1-4,
Practicals 1-6

This last one is critical. Most of work we have done so far, focused on code running
on the client, i.e., in the user’s browser. Recall though that they, the user, control that
environment. They can do anything they want with the code and data you send. The
server is only the environment you as the developer fully control (i.e., both the
hardware and the software) and thus is the only place you can enforce the business
logic (i.e., rules) for your application.

A concrete examples of the last is rejecting duplicate titles in Simplepedia. Even if we
checked for duplicate titles on the client (in our code), nothing prevents a user from
sending an article to the API (to the server) with a duplicate title.

2

What is the role for the server?

• Persistence
Save data between ephemeral browser sessions

• Communication
Enable different users to share data

• Provide computational resources
Access storage, compute or software not available on a
user’s machine

• Enforce business logic
Maintain data integrity regardless of client behavior
(malicious or not)

3

Client
(e.g., browser)

Internet Site

Web Server
(e.g., Apache,

NGinx)

App. Server
(e.g., NodeJS)

Database
(e.g., SQLite,
PostgreSQL)

Routing &
Controllers
(e.g., NextJS,

Express)

Models
(e.g.knex,
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

The server equivalent of Hello World using built-in Node modules.

We pass a function to act as the main logic of the server. The server hands that
function two objects, a request object and a response object. The request object
contains everything we need to know about the request from the client. We then use
the methods of the server to respond. Here, we are ignoring the request altogether.
On every response, we issue a 200 (response OK), set a head to indicate we are
sending plain text, and then send “Don’t Panic”.

For each request we need/want to respond with a status code (recall 2** is success,
other ranges define different types redirects, errors, etc.) and typically a response
body. Here that body is plain text, but since most of the servers we will build are
intended to support "thick client" single-page applications, the request will return
JSON encoded data (i.e., data encodes as a string using the JSON specification).

Note that the server is stateless. The server doesn’t remember who you are.
Every transaction is a new one. This is how servers can handle high volumes
of requests. Recall we had talk about cookies and other similar techniques to
create the notion of a session.

4

A simple HTTP server

const http = require('http');
const server = http.createServer((request, response) => {
 response.writeHead(200, { 'Content-Type': 'text/plain' });
 response.end("Don’t Panic");
}).listen(5042);
console.log('Listening on port %d', server.address().port);

Node HTTP module

Manually
construct
the
response

$ curl http://localhost:5042/
Don’t Panic

In action:

http://localhost:5042/

Using what we just saw, we could implement this as… [click]

With this low-level interface we are responsible for everything, including interpreting
the request and building the entire response. As you expect there is an opportunity
for frameworks that implement the common features of a web server. For example,
constructing that regular expression to match and extract parameters from the URL.
That is, we should be able to translate the high-level description of the endpoint, in
the corresponding regex or other code for parsing the URL.

We will use tools built into NextJS. That is not the only approach. A common tool is
Express (https://expressjs.com), a "minimalist" routing-oriented framework (and
what we previously used in class). There is a counterpart to Express in most server-
side languages (e.g., Sinatra for Ruby and Flask for Python). And in fact, we will use
libraries that help make NextJS more express-like.

5

Recall the Simplepedia API
Endpoint Method Action

/api/articles/:id GET Get article with id of :id

/api/articles/:id PUT Update the article with id of :id (entire updated article,
including id should be provided as the JSON-encoded
request body

const http = require('http');
const server = http.createServer((request, response) => {
 const path = url.parse(request.url, true).query;
 if (
 path.match(/^\/api\/articles\/((?:[^\/]+?))(?:\/(?=$))?$/i) &&
 request.method === 'GET’
) {
 …
 }
}).listen(5042);
console.log('Listening on port %d', server.address().port);

Next has support for API routes built in. So, when we deploy, it handles both
serving the static files (the HTML and JavaScript), as well as providing the API
endpoints. To add a new route, we add a new file to the API directory and
implement in it a function that looks like this. As we saw with pages, the
directory structure supports dynamic routing, i.e., a single file matches
multiple routes, and we can extract variables from the URL (e.g., id, this
code). That is the complex regular expression we saw previously is
implemented in the file naming conventions.

The req and res are not quite standard http.IncomingMessage and
http.ServerResponse we sew previously; they have some extra built-in
methods for common operations.

Note, that while this code is the same pages directory as the components
you worked on in your assignments, by virtue of being in the api subdirectory,
this code runs on the server, while the rest of your code is running on the
client. That is this code can access resources and do things the client-side
code can’t, e.g., access a database (and vice-versa). By vice verse we mean
the client code can use browser features that aren’t available on the server.

6

NextJS API routes: api/articles/[id].js

export default async function handler(req, res) {
 const { method, query } = req;
 switch (method) {
 case "GET": {
 const article = … query.id …;
 res.status(200).json(article);
 break;
 }
 case "PUT": {
 …
 break;
 }
 default:
 res.setHeader("Allow", ["GET", "PUT"]);
 res.status(405).end(`Method ${method} Not Allowed`);
 }
}

Function which accepts the request and
response objects, for requests matching file path

Convenience function
for returning JSON

req.query contains the portion of
the URL that maps to the id

Variables in URLs, e.g. [id], become NextJS dynamic API routes. The relevant
parameters are extracted by middleware (stay tuned…)

Note that /api/sections could map to /api/sections.js as shown or
/api/sections/index.js. The directory name (with nothing else) maps to the index.js
file. When might we use or the other? If we have multiple nested routes under a
prefix, like we do with /api/articles, we will likely need multiple files and thus want
the latter approach with a directory as opposed to a single file.

7

NextJS endpoint-to-file mapping
Endpoint Method File
/api/sections GET /api/sections.js
/api/articles GET /api/articles/index.js
/api/articles?section=:section GET /api/articles/index.js
/api/articles POST /api/articles/index.js
/api/articles/:id GET /api/articles/[id].js
/api/articles/:id PUT /api/articles/[id].js

Variable indicating
specific article

https://nextjs.org/docs/api-routes/dynamic-api-routes

Note:
could be implemented in

/api/sections/index.js

We will often use next-connect. This is a library that makes our routes a little
simpler to write. It is also based on the same approach as Express, which is
the library we would use for implementing servers if NextJS didn’t support
API routes.

These do the same thing, but with next-connect it is clearer which endpoint
we are implementing (even if a bit more verbose). And (although not shown
here) next-connect also centrally handles non-matches, makes it easier to
incorporate middleware, and more.

8

Raising the level of abstraction

const handler = (req, res) => {
 const { id } = req.query;
 if (req.method === 'GET'){
 // ...
 } else if (req.method === 'PUT’) {
 // ...
 } else if (req.method === 'DELETE’) {
 // ...
 }
 }

export default handler;

import { createRouter} from 'next-
connect';

const router = createRouter();

router.get(async (req, res) => {
 const { id } = req.query;
 // ...
 })
 .put(async (req, res) => {
 const { id } = req.query;
 // ...
 })
 .delete(async (req, res) => {
 const { id } = req.query;
 // ...
 });

export default router.handler();

Default API Routes Using next-connect

9

Interlude: Other NextJS server
functionality

• API routes are just one form of server-side
functionality

• NextJS also supports different types of server-
side rendering (SSR)
– Provide getServerSideProps function with

your Page component to execute on server for
each request. Return value injected into
component as props

– Provide getStaticProps to render page
statically during build

What do we mean by middleware. We can think of the server as a pipeline
where the middleware are the stages in the pipeline. Each piece of
middleware in the chain takes in the request and the response. It can then
end the request/response cycle, or it can modify and pass the objects on to
the next operation in the pipeline. Most of these middleware augment the
request or the response and pass it on.

Notice that the endpoints that we write are just another piece of the
middleware: We can end the chain, or we can pass the request and response
along to the next layer.

Response middleware is an example of a design pattern for implementing "cross
cutting" concerns. Each middleware has access to the request, the response and the
next middleware in the chain. Invoking `send` or response methods (depending on
the specific library API) terminates the chain (and sends a response), while calling
`next()` passes the request (and response) objects to the next middleware in the
chain. With the middleware pattern we build up a complex application from many
small transformations to the request (or response).

Unlike the routes we just saw, which are invoked for only a specific request, the
middleware handlers are invoked for all requests. For example, in many applications
most routes require the user to login. Instead of introducing this check in each route,

10

Middleware

M
id

dl
ew

ar
e

AP
I r

ou
te

s

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Request

Middleware modify or respond to request
Response

”Built-in” middleware:
• req.query: Builds the query and leaves it in req.query
• req.body: Parses the request body in the format specified in the headers
• req.cookies: Contains the cookies sent with the request

we can do so with a middleware that will redirect all but a few specific un-
authenticated requests to the login page.

Example middleware:
body-parser: Parse JSON request body
static: Return static assets, like HTML or CSS files

10

Middleware is an example of Aspect-oriented programming.

“Aspect-oriented programming is a technique for building common, reusable routines
that can be applied applicationwide.” -
https://www.sciencedirect.com/topics/computer-science/aspect-oriented-
programming#:~:text=Aspect%2Doriented%20programming%20is%20a,error%20han
dling%2C%20etc.).

We will see other examples of "cross cutting" concerns soon, notably in
implementing validations for models (in the MVC sense).

What is the/a criticism of AOP? A common criticism is “action at a distance”,
that is when working on/debugging a specific route the issue may originate in
middleware that is implemented and included the response chain somewhere
else. That distance can make debugging tricky!.

11

Aspect-oriented Programming (AOP)

• Design pattern for implementing “cross-
cutting” concerns
Middleware is an example of AOP

• “Cross cutting” concerns are those that affect
many parts (or concerns) of the code
E.g., many requests require body parsing

• AOP is a general set of techniques for DRYing
up “cross cutting” concerns

What about the Model? This is both specific code we will implement to provide cross-
cutting functionality for data validation, associations (links between different kinds of
data), and to transparently support different persistence layers. But it also a general
term for think about the "resources" or "nouns" in our application. That is think of it
as the "data model" for our application. That data model influences the code we
write for interacting with the database, but also determines what routes we create.

12

Client
(e.g. browser)

Internet Site

Web Server
(e.g. Apache,

NGinx)

App. Server
(e.g.NodeJS)

Database
(e.g. sqlite,
PostgreSQL)

Routing &
Controllers
(e.g. NextJs)

Models
(e.g.knex,
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

As a second example, consider Simplepedia, most routes implement a RESTful
interface for the "Article" resource/model. Is that the only resource? No. We also
have a resource representing sections. The sections are derived from our article data
but is implemented as a separate resource in our API.

14

Where do routes come from?

Route Controller Action

POST /api/films Create new movie from request data

GET /api/films/:id Read data of movie with id == :id

PUT /api/films/:id Update movie with id == :id from request data

DELETE /api/films/:id Delete movie with id == :id

GET /api/films List (read) all movies

A single model: Film

Routes typically derive from RESTful actions on the
models or resources, the "nouns", in our application.

C

R

U

D

L

The nouns in the user stories (blue) often correspond to models, while the verbs (red)
correspond to associations between models and/or methods on the models. As you
start to define the user stories for your application, e.g., your project, start to look for
shared nouns that will become your models.

The models will then often become the resources in your server API. For example,
here movie becomes the film resource. These two user stories imply that we may
need another resource representing the opinion of the movie, and a corresponding
API route for creating that rating. To help us figure that out cheaply, before we write
any code, we use CRC cards. CRC cards, which we saw in our spring 0 planning
meeting last time are low-cost mechanism for figuring out this data model, and
specifically figuring out the resources in our application and the relationships
between them. For example…

17

Resources come from user stories

Independently rate a movie
As a user
I want to rate a movie
So that I can save my opinions of the movie

Show average ratings
As a user
I want to view average ratings of a movie
So that I can know if it is a good movie

CRC cards are like user stories, but for classes. Each index card contains:

• On top of the card, the class name
• On the left, the responsibilities of the class, i.e., what this class "knows” and

"does". For example, a "car" class may know how many seats and doors it has and
could "do" things like stop and go.

• On the right, the collaborators (other classes) with which this class interacts to
fulfill its responsibilities

Like User Stories, using an index card limits complexity and helps designers focus on
the essentials of the system.

<Fill in knows its rating, and as a collaborator Rating>

A preview of associations or how we talk about relationships between models. Here…
• A film has many showtimes
• There is a many-to-many relationship between Users and Films via the ratings.

Often called a “has many through” association.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

18

Lo-fi OO modeling: CRC cards*

Film

Responsibility Collaborator

Knows its title

Knows its plot overview

Know its showtimes Showtime

*Kent Beck & Ward Cunningham, OOPSLA 1989

Showtime

Responsibility Collaborator

Knows its theater Theater

Knows its time

”has many”

User

Responsibility Collaborator

Knows user’s name

…

Knows movies I rated Rating

Rating

Responsibility Collaborator

Knows rating

Knows its owner User

Knows its film Film

”many to many”

Knows its ratings Rating

Working from our CRC cards, implementing the first user story might involve the
following RESTful routes to create and update ratings associated with a film (i.e., a
child resource of a film).

19

Closing the loop to define the API

POST /api/films/:film_id/ratings
 PUT /api/films/:film_id/ratings/:rating_id

Independently rate a movie
As a user
I want to rate a movie
So that I can save my
opinions of the movie

ratings are a child resource of films

The second user story would likely still be part of getting the data about a film, but
would imply in that route we would want to obtain and summarize the associated
ratings, i.e., we aren't creating a new API per se, but using the CRC cards to guide how
we implement the route itself.

20

Closing the loop to define the API

GET /api/films/:film_id

Show average ratings
As a user
I want to view average
ratings of a movie
So that I can know if it is a
good movie

21

In-class application example

As an instructor, I want to launch a multiple-choice question to a
room so that participants can respond.
As an instructor, I want to see the count and breakdown of
participant responses in real-time so I can monitor response
rates and understanding

Room	
Knows name	
Knows members	User via Roster
Knows polls	Poll

Poll	
Knows start & end	
Knows results	
Knows rooms	Room

User	
Knows name, email, etc.	

Roster	
Knows role (e.g., instructor, participant)	
Knows room	Room
Knows user	User

22

In-class application example

As an instructor, I want to launch a multiple-choice question to
a room so that participants can respond.
As an instructor, I want to see the count and breakdown of
participant responses in real-time so I can monitor response
rates and understanding

Room

Responsibility Collaborator

Knows name

Knows members User via Roster

Knows polls Poll

Poll

Responsibility Collaborator

Knows start & end

Knows results

Knows rooms Room

User

Responsibility Collaborator

Knows name

Knows email

Roster

Responsibility Collaborator

Knows role

Knows room Room

Knows user User

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

23

Student Advice: CRC cards and
designing up front

• “Having a solid design & schema saved us a lot
of pain”

• “MVC's separation of concerns really made for
a nice app structure”

• “Designing rich client-side and server-side in
SOA made it easy to decouple development”

• “We wish we had designed the object model
and schema more thoroughly”

Adapted from Berkeley CS169

http://localhost:3000/api/articles/10

24

Demo: Testing Your API

Three methods:
• curl (command line)
• fetch (javascript)
• postman (web UI)

