
These associations have specific schema associated with them. That is the association
will determine what columns we need in our database. Specifically …

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

10/29/24

Recall: Film Explorer CRC cards

*Kent Beck & Ward Cunningham, OOPSLA 1989

Film

Responsibility Collaborator

Knows its title

Knows its plot overview

Know its showtimes Showtime

Showtime

Responsibility Collaborator

Knows its time

”has many”

User

Responsibility Collaborator

Knows user’s name

…

Knows movies I rated Rating

Rating

Responsibility Collaborator

Knows rating

Knows its owner User

Knows its film Film

”many to many”

Knows its ratings Rating

The first approach is what we would implement in a memory backed server (and
most NoSQL DBs). All the data for film, including its one or more showtimes are
packed together in a single, albeit variable sized, object. No additional data is
required. In contrast, a normalized approach breaks the film into two fixed size parts,
the film itself and separate showtime entries, that are linked together via foreign
keys, that is we need to include additional columns/attributes - the filmId column - to
create the connection between the two tables. The second, normalized, approach is
typically used with RDBMS (these are the relations in the name).

We could describe normalization as eliminating repeated information in a table by
decomposing repeating entries into separate linked tables. The data is reconstructed
via join operations (to come…)

More specifically, “first normal form” enforces these criteria: 1) Eliminate repeating
groups in individual tables, 2) Create a separate table for each set of related data, 3)
Identify each set of related data with a primary key

Foreign keys enforce the connection between two tables. A foreign key is a constraint
not a type. To insert an entry into Showtime, there must be a corresponding entry in
the Film (it will fail if there is no Film). Ensuring that all foreign key references are
valid is termed maintaining “referential integrity” and is one of the benefits of
RDBMs.

22

10/29/24

Two approaches to Film ⇔ Showtime

id … showtimes
1
2
3

+ Fewer tables and joins
- Variable sized records
- Trickier to search

De-normalized Approach

id …
1
2
3

Film table Film table Showtime table
filmId time
1 10/24/2024, 6:00:00 PM
1 10/25/2024, 3:15:00 PM
2 10/24/2024, 6:00:00 PM

Serialize multiple showtimes
into attribute, e.g.,
["10/24/2024, 6:00:00 PM",
"10/25/2024, 3:15:00 PM", …]

Normalized Approach

Foreign Key referencing
Film.id links tables

When we implement this route to on the film explorer server we want to obtain all
the data for this film, including its showtimes. But now that data is separate. How do
we combine the data from the two tables?

24

10/29/24

{
 "id":1,
 "title":"Smile 2",
 ...
 "showtimes":[
 {
 "filmId":1,
 "time":"10/18/2024, 3:15:00 PM"
 }, ...]
}

Associations: “One-to-many” example

From Film table

From Showtime table

GET /api/films/1

Desired response

Here we see two approaches to construct the entire object returned by this route:
1. The multiple queries approach first gets gets the film, then the associated

showtimes.
2. The join approach conceptually builds a table with a row for each combination of

movie and showtime (with both sets of columns and duplicated movie entries)
and then filters that table according to the join conditions and where clause, etc.

The former requires more queries (more latency), but it is simpler to parse into tree
of Objects. The latter is one (complex) query but parsing results into objects will be a
little more involved.

In practice we will not implement these queries directly. Instead, we will use the
(Objection.js) ORM to create the queries for us. Here we are telling Objection to
eagerly, as opposed to lazily, fetch and populate the showtimes. The ORM uses the
associations defined in the model class to generate the appropriate query and
construct the final object.

26

10/29/24

filmId time
1 10/24/2024, 6:00:00 PM
1 10/25/2024, 3:15:00 PM
2 10/24/2024, 6:00:00 PM

Associations: “One-to-many” example
Showtime table

Foreign Key referencing Film.id

SELECT `Film`.* FROM `Film` WHERE `Film`.`id` = 1;
SELECT `Showtime`.* FROM `Showtime` WHERE `Showtime`.`filmId` IN (1);

GET /api/films/1

SELECT `Film`.`id` AS `id`, ...,
FROM `Film` LEFT JOIN `Showtime` AS `showtimes`
ON `showtimes`.`filmId` = `Film`.`id`
WHERE `Film`.`id` = 1

Film.query().findById(id).withGraphFetched('showtimes')
Fetch the film and all of its showtimes

How did Objection.js know to generate that queries from that terse set of calls? We
specified the relation in the Model. Here is the relevant portion of Film Model. We
specify a one-to-many relation named “genres” (the key in the object return by
relationMappings) and the relevant columns in the DB that implement that relation. It
is that name (and relation) that we are referencing in withGraphFetched. Using that
name, and the corresponding association information in the model, Objection can
generate the relevant query.

10/29/24

27

Implementing “one-to-many” with
Objection.js

class Film extends Model {
 static get tableName() { return 'Film'; }
 …
 static get relationMappings() {
 return {
 showtimes: {
 relation: Model.HasManyRelation,
 modelClass: Showtime,
 join: {
 from: 'Film.id',
 to: 'Showtime.filmId',
 },
 },
 };
 }
}

Film
 .query()
 .findById(id)
 .withGraphFetched(
 'showtimes'
)

SELECT `Film`.* FROM `Film`
 WHERE `Film`.`id` = 1;
SELECT `Showtime`.* FROM `Showtime`
 WHERE `Showtime`.`filmId` IN (1);

Relevant
columns in DB
schema

Joins are such a key feature of an RDBMS I want to briefly expand on what is going on
behind the scenes. Our mental model for joins is a filtered cartesian product. That is
the database system is creating all combinations of entries from the Film table and
the Showtime table and then only keeping those where the join criteria, in this case
that Film.id == Showtime.filmId, is true (the actual implementation is more efficient
than that though!).

28

10/29/24

Joins as filtered cartesian product

Film.id … Showtime.filmId Showtime.time
1 1 10/24/2024, 6:00:00 PM
2 1 10/24/2024, 6:00:00 PM
3 1 10/24/2024, 6:00:00 PM
1 1 10/25/2024, 3:15:00 PM
2 1 10/25/2024, 3:15:00 PM
3 1 10/25/2024, 3:15:00 PM
1 2 10/24/2024, 6:00:00 PM
2 2 10/24/2024, 6:00:00 PM
3 2 10/24/2024, 6:00:00 PM

Film × Showtime cartesian product

Film.id == Showtime.filmId

Our previous response was the direct output produced by Objection.js as it joined the
Film and its showtimes. In many cases that is exactly what we want. But we notice it
contains lots of extraneous data (i.e., repeats of the filmId). We could imagine want
to strip that out, or otherwise modify the response. One place to do is in the API
handler. Keep in mind that is just JavaScript code and so we can execute other
operations, like transforming the showtimes. If we wanted to do this every time with
your model, we are best off integrating that transformation into the model itself..

29

10/29/24

Interlude: Refining server responses

GET /api/films/1

{
 "id":1,
 "title":"Smile 2",
 …
 "showtimes":[
 "10/18/2024, 3:15:00 PM", …]
}

Desired response
{
 "id":1,
 "title":"Smile 2",
 ...
 "showtimes":[{"filmId":1,
 "time":"10/18/2024, 3:15:00 PM"}, ...]
}

const { showtimes, ...film } = ...;
res.status(200).json({
 ...film,
 showtimes: showtimes.map(s => s.time)
});

Duplicated, many times if
there are multiple
showtimes!

This is better And can be achieved through JS!

The last assumes we have obtained the movie and the user already in the handler,
e.g. via fetchById.

30

10/29/24

Ratings: A “many-to-many” association

Get a movie with its ratings?
GET /api/films/12
Film.query().findById(id).withGraphFetched('ratings')

Create a new rating for a movie?
POST /api/ratings
Rating.query().insert({…})
Or from a movie
POST /api/films/12/ratings
movie.$relatedQuery('ratings').insert({…})

filmId userId rating

int int int

12 4 2

53 4 3

Foreign Keys and Primary Key

Rating
”Join Table”

Insert rating without either related
model object (User or Film)

Insert rating from Film object

These are established designs for these relations, that is once you define the relation
we know where the keys need to go. We don’t need to figure that out every time.
[end]
Why does the foreign key need to go in the “many” side of the relation? Recall we
want the records to be fixed size. If went it in the ”one” side, we would potentially
have multiple entries, i.e., a variable length array of keys.

31

10/29/24

Where do the foreign keys go?

• One-to-One or “HasOne”/“BelongsToOne”
Foreign key typically in the “BelongsToOne” side
(although could be reversed)

• One-to-Many or “HasMany”/“BelongsToOne”
Foreign key in “BelongsToOne” side (the “many”
side of relation)

• Many-to-Many
Foreign keys in join model, e.g., Rating in “User and
Film through Rating”

Answer: D

Answers A & B are missing foreign key constraints and thus will not enforce that a
showtime entry must be associated with a valid film. When a Film is a deleted, we
want to delete all of its showtime entries, onDelete('CASCADE') does that. Answer
C/3 could work but would require an additional attribute, i.e., require more space
than D.

32

10/29/24

Which of the following is the best migration (schema)
for the Showtime table in the Film Explorer? Note that
`onDelete('CASCADE')` specifies that rows are deleted
from the table if that corresponding row is deleted
from the parent table.
A.
table.increments('id');
table.integer('filmId');
table.string('time');

B.
table.integer('filmId');
table.string('time');
table.primary(
 ['filmId', 'time']);

C.
table.increments('id');
table.integer('filmId’)
 .references('id’)
 .inTable('Film');
 .onDelete('CASCADE');
table.string('time');

D.
table.integer('filmId’)
 .references('id')
 .inTable('Film')
 .onDelete('CASCADE');
table.string('time');
table.primary(
 ['filmId', 'time']);

In the Film Explorer application, the model is a Film. In our practicals, there is no
explicit model class, just a plain old JavaScript object (POJO) representing the records
in the table. Depending on the application we might not need much more. But as we
saw already, Film Explorer could and does benefits from established design patterns
and built-in functionality offered by an ORM library (Object Relational Mapping).
ORMs are a design pattern for mapping database schema to an object whose
methods/properties correspond to attributes in DB, DB queries, etc.

We already saw use of the ORM model to express and implement associations
between models (the eager withGraphFetched), some other features are:
Validations: Exactly what they sound like, example of Aspect-oriented programming
(i.e., these validations are relevant everywhere the model is created/used. Instead re-
implementing that code, we do it once).
Virtual attributes: Convenience ”attributes” derived from actual attributes/columns in
DB.

Just how different of a database can a given ORM support? Some… Across different
RDMSs, e.g., sqlite, MySQL and PostgreSQL. Yes. Relational vs. Non-relational? No.

33

10/29/24

Film model (M in MVC)

• Express associations between models
• Validate user rating is 0-5
• Provide “virtual” attributes that transform data

Film “resource” starts as a simple object (POJO),
later transitions to ORM model

class Film extends Model {
 static get tableName() }
 return 'Film';
 }
 ...
 static get relationMappings() {
 ...
 }
}

Film table in database

ORM is a design pattern for mapping
database schema to object

34

10/29/24

Site

Web Server
(e.g. Apache,

NGinx)

App. Server
(e.g.NodeJS)

Database
(e.g. Mongo,
PostgreSQL)

Routing &
Controllers
(e.g. Express)

Models
(e.g.knex,
objection)

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

These ORM models exist only on the
server

Communicate with client via JSON (POJO)

The schema alone, i.e., type, is insufficient to enforce the range. So here we leverage
the ORMs additional validation tools. This is an example of where AOP can be useful,
as these validations should be and are enforced everywhere a model is
created/modified, i.e., we want to implement that cross-cutting concern once, not
repeatedly…

Note that any constraint could be implemented in this way (not just range).

Remember, AOP is a Design pattern for implementing “cross-cutting” concerns

35

10/29/24

Validation (recall aspects & AOP)
Mechanisms for validating model data?
• Schema itself (unique, not null, etc.)
• Requirements specified in ORM model

Film.query().patchAndFetchById(…, { rating: 10 })

properties: {
 ...
 rating: {
 type: ['integer', 'null’],
 minimum: 0,
 maximum: 5
 },
}

Film.fromJson

throw ValidationError

400 Bad Request

Model Schema

When you were looking through the in-class backlog, you likely saw these CRC cards.
Let’s turn this high-level representation into a design for a relational database.

• We will Let’s start by translating the knows/collaborators into the formal
associations we saw last time.

• What are the relationships between Room and Poll? One-to-many, i.e., a
room has many polls, but a poll belongs to a single room.

• What about relationship between Room and User? This is a many-to-
relationship, as each room has many users and a user could be a member
(student or instructor) of many rooms (i.e., of many classes). That implies
the need for a join table that connects these two. Further in this case we
will likely want to encode additional information about this relationship,
e.g., is the user a student or an instructor. Let’s call that join Model, Roster,
Thus we would express this as a many-to-many through Roster.

Roster	
Knows user	User
Knows room	Room
Knows role { student, …}	

37

“in-class” data model

Room

Responsibility Collaborator

Knows name

Knows polls Poll

Knows members User

Poll

Responsibility Collaborator

Knows start & end

Knows results

Knows room Room

User

Responsibility Collaborator

Knows e-mail, etc.

Knows rooms Room

…

• What relationships are there
between room and poll?

• What relationships are there
between room and user?

38

“in-class” data model

Room

Responsibility Collaborator

Knows name

Knows polls Poll

Knows members User

Poll

Responsibility Collaborator

Knows start & end

Knows results

Knows room Room

User

Responsibility Collaborator

Knows e-mail, etc.

Knows rooms Room

…

Roster

Responsibility Collaborator

Knows user User

Knows room Room

Knows role (student, …)

“has many”
“many to many”

What are some things that you now notice (especially as it relates to the associations
we just defined)?
• Recall that in a one-to-many relationship the foreign key goes in the “many” side

(so our records are of a fixed size). We see that here, the roomId is an integer that
references the id in Room (recall foreign keys are a constraint, not a type). Further,
we specify that polls should be deleted if the room is…

• The other attributes you see, e.g., values, created_at, and ended_at, correspond to
the knows in the CRC card (the values and the start/end times).

• They have specific types (doing so helps with performance, validation, etc. ”out-of-
the-box”). We want to look first to specialized types that might be relevant to our
attributes before defaulting to something like string, text etc.

https://github.com/csci312-common-v2/class-
interactor/blob/main/src/knex/migrations/20230116140145_rooms.ts

10/29/24

39

Example schema

`

knex.schema
 .createTable("Room", (table) => {
 table.increments("id").primary();
 table.uuid("visibleId").unique().notNullable();
 table.string("name").notNullable();
 })
 .createTable("Poll", (table) => {
 table.increments("id").primary();
 table
 .integer("roomId")
 .references("id")
 .inTable("Room")
 .notNullable()
 .onDelete("cascade");
 // or table.foreign("roomId").references("Room.id")…
 table.jsonb("values");
 table.timestamp("created_at").defaultTo(knex.fn.now());
 table.timestamp("ended_at");
 });

Our foreign key

We would need to create the User table. Does the model schema have any references
to Room, etc. No. That is all contained within the Roster join table…
What does the Roster table need? roomId and userId columns that foreign keys
(linked the to the ids in those respective tables), and an additional column that stores
the role for this individual (here is an enumerated value, i.e., it can only take on
certain values, e.g., someone who can administer the room and someone or is a
participant (e.g., maybe they can only view, not control/administer a room).

If we assume a user and room can only have one relationship, then the combination
of userId and roomId will be unique and could be used as a composite primary key

return knex.schema.createTable("User", (table) => {
table.increments("id").primary();
table.string("googleId");
table.string("name");
table.text("email");
})
.createTable("Roster", (table) => {
table.foreign("userId").references("User.id").notNullable
().onDelete(”CASCADE");
table.foreign("roomId").references("Room.id").notNullable
().onDelete(”CASCADE");

10/29/24

40

How would we design the User/Roster
tables?

table.enu("role", ["administrator", "student"], {
useNative: true, enumName: "roster_role_type"
}).notNullable();
table.primary(['userId', 'roomId']);
});

10/29/24

40

// When fetching users make sure to include "role" from the
join table

10/29/24

42

How would we use this association?
// relation mapping in objection.js Room model
users: {
 relation: Model.ManyToManyRelation,
 modelClass: User,
 join: {
 from: "Room.id",
 through: {
 from: "Roster.roomId",
 to: "Roster.userId",
 extra: ["role"]
 },
 to: "User.id",
 }
}

Room
 .query()
 .where(…)
 .withGraphFetched("users");

[Room {
 id: 1,
 visibleId: …,
 name: 'TestClass',
 users: [User {
 id: 1,
 name: …,
 role: "administrator",
 }]
}]

Model relation enables
concise query…

Which produces…

Ensures that "role" is
included from the join

table

5-10 minutes

10/29/24

43

Standup Meeting Prompts

Each team member should discuss:
• What they did since the last class to help the

team meet the Sprint Goal
• What they plan to do between now and the

next class
• Any impediments that will prevent the team

from meeting the Sprint Goal

10/29/24

44

Exam Details

• Administered on gradescope
– Practice exam we’ve been going through in class is

available today through Friday as an example!
– Start (the real exam) between 12:00AM on

Wednesday and 9:45PM on Friday
• Print exam, write your answers in the space

given, and scan
– Recommendation: use the CamScanner app and

test creating a PDF with multiple pages before the
exam!

10/29/24

45

Exam Details

• All questions will be graded credit/no-credit
• There is some leeway:
– You need to get 7/8 questions correct for an A in

the course
– You will have the opportunity to take a retest later

in the semester if you so choose

10 minutes to work on practice questions, 10 minutes to review

10/29/24

46

Question 7 Spring 2024 Midterm #1

Assume you are developing a web application for
supporting student clubs at a college, e.g., membership
lists, calendars, announcements, etc. You will be using a
relational database to store the data for this
application.
(a) Identify the minimum set of models you would
define in your server backend to implement the
following user story:

As a student, I want to view a consolidated a list of
announcements for all the clubs I am a member of,
so that I can stay informed about all club activities.

10/29/24

47

Question 7 Spring 2024 Midterm #1

Assume you are developing a web application for
supporting student clubs at a college, e.g., membership
lists, calendars, announcements, etc. You will be using a
relational database to store the data for this
application.
(b) Which of the following best describe the relations
between the following pairs of entities:

10/29/24

48

Question 7 Spring 2024 Midterm #1

Assume you are developing a web application for
supporting student clubs at a college, e.g., membership
lists, calendars, announcements, etc. You will be using a
relational database to store the data for this
application.
(c) In a normalized schema designed for a relational
database (RDBMS), what schema would be needed to
support club membership. Assume club members can
have different roles, e.g., “member”, “president”, etc.
You do not need to provide SQL, just the attributes,
their types, the primary key, and any foreign key
constraints.

10/29/24

49

Question 8 Spring 2024 Midterm #1

For each of the following, indicate whether the action
would be consistent with the best practices for
software development as described in class or not
consistent
(a) Each team member uses a separate “personal” branch throughout

the sprint, e.g., mlinderman_sprint1, to implement their tasks
before merging with main at end of the sprint.

(b) Assign a responsible developer for all the tasks in the sprint
backlog during the sprint planning meeting.

(c) Update the main branch and rebase a newly created feature
branch before pushing that feature branch to GitHub for the first
time.

