
We previously introduced the role of the server: to provide persistence, a means for
communicating between users and a secure environment (controlled by you) for
operations that could/should not be performed by the untrusted client. Today we will
focus of the first of those roles – persistence, that is saving data for future use.
Although in doing so we will also touch on data integrity and related issues.

7

10/28/24

Client
(e.g. browser)

Internet Site

Web Server
(e.g. Apache,

NGinx)

App. Server
(e.g.NodeJS)

Database
(e.g. SQLite,
PostgreSQL)

Routing &
Controllers
(e.g. NextJS)

Models
(e.g.knex,
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

Our memory backed server worked (and was nice and simple) but had a major
limitation, all modifications were lost when we reloaded the server. That is obviously
not something we can tolerate in a real application. But the in-memory approach also
has many other limitations that make it a poor choice for any real application.

What are those limitations, or perhaps from a more optimistic perspective, what are
benefits of using a real database system as the persistence tier for our application
(other than that when restart out server/the database the data is still there!) [clickl]

8

10/28/24

Why a database?

• Efficient random access when total dataset is too
large to fit in memory

• Fast and complex queries (not fast or complex)
• Model relationships within the data
• Transactions and other forms of fault tolerance
• Security (and management tools)

// pages/api/articles/[id].js
router.get((req, res) => {
 res.status(200).json(articles.get(req.query.id)); // not fully working code
});

What are the limitations of the memory-backed
server (or what missing features do we want)?

In the typical setup the database is its own process, and often running on a separate
machine(s), and our application server (i.e., running on Node) communicates with the
database server via TCP/IP or some other message-based protocol. That interaction
occurs via SQL (a standardized language for querying relation databases) or a custom
domain-specific language.

Although I should note that one of the databases we will use, SQLite, is not a server.
It is a library that runs inside the “client” process, accessing a database stored entirely
within a single file. As an aside, SQLite is one of the most widely-used pieces of SW
ever written. It is embedded in basically everything, e.g., web browsers, iOS, etc.,.

9

10/28/24

Database client and server

App. Server
(e.g.NodeJS)

Database
(e.g., SQLite,
PostgreSQL)

Persistence Tier

Often separate server or processMessage-based protocol
(over TCP/IP, etc.)

Interface is typically SQL or
custom DSL

I just mentioned the term “relational database”. That is a term for a particular class of
database management tools, it also sometimes referred to via “SQL”, which is really
the name of the query language used by relational DBs. The alternative is often called
“NoSQL”, or more appropriately “non-relational” databases. An example of the latter
would be Google’s Firebase.

One of the decisions we will need to make in our project is what kind of database to
use. Like many decisions we encounter in class there is no right answer – although
the entire Internet will have an opinion – just tradeoffs. From my perspective, NoSQL
is more flexible, and perhaps easier to get started, but the flexibility begets
challenges in managing your data. In contrast, relational databases have a slightly
steeper learning curve but force us to organize our data in helpful ways. A relevant
analogy might be a statically-typed languages like Java (relational) vs. dynamic
languages like Python (non-relational). The latter is quick to get going but is
susceptible to type errors that are not possible in Java…

Before we can pick a database, however, we need to figure out how the data in our
application is structured (i.e., determine the data model as discussed previously) and
only then can we pick a database that make sense for our application. Again, from my
perspective, a well-designed data model is more important than the choice of
database system.

10

10/28/24

SQL vs. NoSQL
Really: Relational vs. Non-Relational

Relational (RDBMS) Non-Relational
Data Table-oriented Document-oriented, key-

value, graph-based, column-
oriented, …

Schema Fixed schema Dynamic schema
Joins Used extensively Used infrequently
Interface SQL Custom query language
Transactions ACID CAP

SELECT * FROM people
WHERE age > 25;

db.people.find(
 { age: { $gt: 25 } }
)

Glossary:
SQL: Structured Query Language
ACID: ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties of
database transactions intended to guarantee validity even in the event of errors,
power failures, etc.
CAP: Two of consistency (most recent data), availability, and partition tolerance.

10/28/24

10

Recall CRC cards are like user stories, but for classes. Each index card contains:

• On top of the card, the class name
• On the left, the responsibilities of the class, i.e., what this class "knows” and

"does". For example, a "car" class may know how many seats and doors it has and
could "do" things like stop and go.

• On the right, the collaborators (other classes) with which this class interacts to
fulfill its responsibilities

The CRC cards help guide the design of our models and database schema. The
“knows” are going to become the fields that we store in our database for each model
and the knows/collaborators define the relationships or associations between those
models. Recall that:
• A film has a one-to-many relationship with showtimes (i.e., film ”has many”

showtimes)
• There is a many-to-many relationship between Users and Films via the ratings, i.e.,,

a film has been rated by many users, and a user has rated many films. This type of
relationship is often called a “has many-through” association.

These terms are semi-formal (note different tools use slightly different names, but
the concepts are the same), that is they map directly to the design of the database
schema. We are effectively designing database tables as we work out these relations.

11

10/28/24

Recall: Film Explorer CRC cards

*Kent Beck & Ward Cunningham, OOPSLA 1989

Film

Responsibility Collaborator

Knows its title

Knows its plot overview

Know its showtimes Showtime

Showtime

Responsibility Collaborator

Knows its time

”has many”

User

Responsibility Collaborator

Knows user’s name

…

Knows movies I rated Rating

Rating

Responsibility Collaborator

Knows rating

Knows its owner User

Knows its film Film

”many to many”

Knows its ratings Rating

That said, I encourage you to approach the data modeling from this “direction”, that is
start by modeling the nouns in your application (and their relationships) then choose
and design your database instead of starting with the database design then
developing the data model.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

10/28/24

11

The relations/associations you will typically encounter are listed here (again a quick
reminder that different tools will use slightly different terminology, but the concepts
are the same). We can think of these associations as design patterns that will enable
us to utilized libraries/frameworks for the ”parts that are the same every time”, i.e.,
automatic validations, optimized queries and more.

A note: the “through” modifier can be applied to one-to-many relationships as well,
and typically implies that the you might want to work with the “through” noun
independently of the two sides of the relationship. We still would want to identify the
relationship as one-to-many to take advantage of built-in validations.

12

10/28/24

Thinking in relations/associations

• “HasOne” / “BelongsToOne”
One-to-one relationship, e.g., Supplier and Account

• “HasMany” / “BelongsToOne”
One-to-many relationship, e.g., Film and Showtime

• “ManyToMany”
Many-to-many relationship (often called “has many
through”), e.g., User and Film through Rating

User Rating Film

Answer: B

A customer can have many animals (pets), but each animal is presumably owned by a
single customer. Although we could imagine situations though where C might be
needed… What would such an example be? Multiple customers were the
owners/responsible parties for a pet.

We could imagine there is data associated with the specific Customer-Animal relation
(e.g., insurance), however that each association may be its own entity doesn’t itself
change that it is a one-to-many relation.

13

10/28/24

You are developing an application for a
veterinarian’s office. How would you
model the relation between Customer
and Animal?

A. One-to-one, e.g., “HasOne”
B. One-to-many, e.g., “HasMany”
C. Many-to-many, e.g., “HasManyThrough”

Answer: False

Consider an application where a user can make and like comments. A user has many
comments via posting (a has-many relation), and user also has many comments via
liking (a many-to-many or has-many-through relation).

14

10/28/24

True or False? Two models can only
have one relation.
A. True
B. False

[click] The associations can be directly translated to URLs. That is a ”has many”
relationship is typically expressed through nested URLs, and thus we infer ”has many”
relationship. In this context we might describe assignments as a subordinate resource
of a course. For viewing a single assignment this may not seem very compelling, as
we could also retrieve the assignment (presumably) with just that id, e.g.,
//assignments/5010276. Where it might be more relevant is for POST, etc.

[click] Here the URL embeds the associated resource, i.e., we are creating a new
assignment in the course indicated by the URL.

In theory we can go infinitely deep with this nesting, in practice we shouldn’t go more
than one or two levels, otherwise it gets unwieldy.

10/28/24

15

Interlude: RESTful URLs for
associations

What association is implied by this URL (from
Gradescope)?

/courses/848148/assignments/5010276

A Course “has many” Assignments
Route Controller Action

GET /courses/:course_id/assignments Retrieve all assignments in associated
course

POST /courses/:course_id/assignments Create new assignment in associated
course

…

With our CRC cards we focused on modeling our data independent of how it is stored.
We will now implement those models using a relational database. Our mental model
is a table (e.g., a spreadsheet table). The attributes/columns are typically the “knows”
in your CRC cards, that is the schema is a nearly direct translation of the CRC card.
And the rows are specific entries, e.g., specific films.

The Primary Key is a unique identifier for a record (that should be not be reused).
Often it is an arbitrary (auto-incrementing) integer, e.g., the “id” in Simplepedia, but
does not need to be (and it can even be a composite of multiple columns) as long as
it is unique. The schema includes type (storage size) and can further include indexes
(think hash tables or trees) to speed up queries and other constraints, like not null.

16

10/28/24

RDBMS mental model

id title overview release_date poster_path vote_average rating

int string text string string float int

1 Star… Princes… 1977-05-25 /tvSLB… 7.7 3

2 2001: A… Huma… 1968-04-05 /90T7… 7.5 4

Film tableSchema (name and type)

Primary key: Unique identifier for record (can be 1+ columns)

Noun/Model, e.g., “Film” ⇔ Table
Model attributes ⇔ Columns

[click] Index, Cursor
[click] Each table has its own schema

17

10/28/24

RDBMS vocabulary
DB instance (e.g., PostgreSQL)

Databases

Rows

Attributes/Columns

Has 0+

Tables

Has 0+

Contains 0+

With 1+

Index
Optimized lookup tables
(e.g., tree) for specific
columns

Cursor
Iterator into the result set
that can obtain a few
documents at a time

Each table has a schema
with types, optional primary
key, optional constraints

We generally won’t write “raw” queries, instead we will use the knex.js query builder
to abstract DB-specific differences, handle “safe” parameters substitution, etc.. We
will further wrap knex with an ORM library (Object Relational Mapping) that provides
a more object-oriented interface to our database (stay tuned).

18

10/28/24

Writing SQL queries

SELECT columns FROM table WHERE conditions;
INSERT INTO table(columns) VALUES (values);
UPDATE table SET column=value, … WHERE conditions;
CREATE TABLE table (column Type, …);

“Raw” queries

SQL Query Builder (knex.js)

MySQL

PostgreSQL

sqlite

ORM
(objection.js)

Our typical usage Schemas

Queries
Marshaling to JSON

Associations
Validation

Migrations are the answer to how we smartly evolve our database schema at at all
stages in our application lifecycle, from creating the initial database schema to safely
evolving the database to add features to our production application (which
presumably has customer data in it). While we could modify our database manually.
We won’t. Instead, we define a series of migrations scripts that evolve the schema
from an empty database to the desired state.

Each migration has two parts, an “up” function that makes the desired changes, e.g.,
creating a table, adding column, etc. and the a “down” function that reverts those
changes. Performing the up function and then the down function should return the
database to its prior state. Each migration is incremental, that is it makes the “next”
set of changes to the prior database/schema data. For example, if you add a feature
that needs a new column in an existing table, we create a migration that adds that
column (and sets an appropriate value for existing entries).

Migrations are a key part of our “overall” DevOps approach.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

19

10/28/24

Managing Schema: Migrations
Customer data is critical! How do you evolve your
application without destroying any data?
• Maintain multiple databases (e.g., test, development,

production, …)
• Change schema/data with scripted migrations

Advantage of migrations:
+ Track all changes made to DB
+ Manage with VCS
+ Repeatable

Migrations create/delete tables, add/remove/modify
columns, modify data, etc.

Why does it work this way? The goal for migrations is to enable to you to evolve a
database that is in use and has customer data that you don’t want to lose. Thus, we
don’t want to “double apply” the changes in a migration. And there isn’t the
expectation that we would go back and modify already implied migrations because
that would invalidate the data.

Modifying a migration is common during development, however. If you do so, either
delete the database and rebuild from scratch (easy with SQLite – just delete the file -
less so with other RDBMSs) or more robustly, rollback the relevant migrations
(invoking the ”down” operations) then reapply the migrations after the making the
edit.

20

10/28/24

Frequent error: Migrations are tracked
by date-time

Knex et al. apply migrations in date-time order and
track the last migration applied
• Applying migrations multiple times won’t have any

effect
• Modifying and re-applying a migration won’t have any

effect
If you modify a migration, rollback then reapply

migrations/20190424165216_users_and_articles.js

Date and time for this migration

These associations have specific schema associated with them. That is the association
will determine what columns we need in our database. Specifically …

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

10/28/24

Recall: Film Explorer CRC cards

*Kent Beck & Ward Cunningham, OOPSLA 1989

Film

Responsibility Collaborator

Knows its title

Knows its plot overview

Know its showtimes Showtime

Showtime

Responsibility Collaborator

Knows its time

”has many”

User

Responsibility Collaborator

Knows user’s name

…

Knows movies I rated Rating

Rating

Responsibility Collaborator

Knows rating

Knows its owner User

Knows its film Film

”many to many”

Knows its ratings Rating

The first approach is what we would implement in a memory backed server (and
most NoSQL DBs). All the data for film, including its one or more showtimes are
packed together in a single, albeit variable sized, object. No additional data is
required. In contrast, a normalized approach breaks the film into two fixed size parts,
the film itself and separate showtime entries, that are linked together via foreign
keys, that is we need to include additional columns/attributes - the filmId column - to
create the connection between the two tables. The second, normalized, approach is
typically used with RDBMS (these are the relations in the name).

We could describe normalization as eliminating repeated information in a table by
decomposing repeating entries into separate linked tables. The data is reconstructed
via join operations (to come…)

More specifically, “first normal form” enforces these criteria: 1) Eliminate repeating
groups in individual tables, 2) Create a separate table for each set of related data, 3)
Identify each set of related data with a primary key

Foreign keys enforce the connection between two tables. A foreign key is a constraint
not a type. To insert an entry into Showtime, there must be a corresponding entry in
the Film (it will fail if there is no Film). Ensuring that all foreign key references are
valid is termed maintaining “referential integrity” and is one of the benefits of
RDBMs.

22

10/28/24

Two approaches to Film ⇔ Showtime

id … showtimes
1
2
3

+ Fewer tables and joins
- Variable sized records
- Trickier to search

De-normalized Approach

id …
1
2
3

Film table Film table Showtime table
filmId time
1 10/24/2024, 6:00:00 PM
1 10/25/2024, 3:15:00 PM
2 10/24/2024, 6:00:00 PM

Serialize multiple showtimes
into attribute, e.g.,
["10/24/2024, 6:00:00 PM",
"10/25/2024, 3:15:00 PM", …]

Normalized Approach

Foreign Key referencing
Film.id links tables

