
Render the PasswordGenerator component
Find and select the "letters and numbers" option in the character input
Find and set the length input to be 12
Find "Create" button and simulate click.
Find the password display field and assert it contains a string of length 12
consisting of only letters and numbers.
Save the current generated password as a variable
Find "Create" button and simulate click.
Find the password display field and assert it contains a string of length 12,
consisting of only letters and numbers, which is different from the previous
password.

10/30/24

1

Question 3 Spring 2024 Midterm #1

You are developing a React component named
PasswordGenerator for generating a random
password. The component has a select box for
specifying common allowed character sets, e.g.,
“letters and numbers”, a numeric input for
specifying the length, a “Create” button to create a
new password, and a text field to display the
generated password. Using the skeleton below,
implement pseudo-code for a F.I.R.S.T. unit test to
verify that each time the user clicks the “Create”
button a new correctly formatted password is
generated. You do not need to provide executable
Javascript, instead describe the steps of your test as
pseudo-code.

Given the user has logged in with username and password "user1" and "password1"
And the user is on the user profile page
When the user enters the new password "password2" in the update field
And clicks the "Update" button
Then the user should be logged out
And the user should be redirected to the login page
And a confirmation message "Password updated successfully" should be displayed
in a flash message

10/30/24

2

Question 4 Spring 2024 Midterm #1

In your application, the user profile page has a
password field with an associated “Update” button
to update the user’s password. If the user updates
their password (to a new password), the user is
logged out, redirected to the login page, and a
confirmation message is shown in a “flash” (i.e., a
message that is shown for a short period of time as
a banner at the top of the page). Write a Gherkin-
style test scenario for updating a password. You do
not need to provide the implementation details of
the tests, just describe the scenario for the test.

5-10 minutes

10/30/24

3

Standup Meeting Prompts

Each team member should discuss:
• What they did since the last class to help the

team meet the Sprint Goal
• What they plan to do between now and the

next class
• Any impediments that will prevent the team

from meeting the Sprint Goal

10/31/24

4

Upcoming…

• Practical 8 (initial) due date today, practical 9
next Thursday

• Exam – take in any 2.5 hour period
Wednesday (the 6th) through Friday (the 8th).
Last time to submit is midnight Friday.

• Sprint 1 deliverables due on Tuesday
• In-class on Tuesday: sprint 1 demo!
– 5 minutes, from the deployed version of your app

Presumably we are building applications to solve problems for users (not just for us).
An application that is never deployed for use by those users has not fulfilled its
purpose.

You have done all these things! We use testing and GitHub actions, for the first (CI),
csci312.dev for the second and csci312.dev’s git push for the third (CD)…

5

10/29/24

Recall: Deployment is closing the loop

Programs that are never deployed have not
fulfilled their purpose. We must deploy!
To do so we must answer:
• Is our application in a working state?
• Do we have the necessary HW/SW resources?
• How do we actually deploy?

CI/CD was a mechanism to ensure our application is in working state, and possibly
directly and automatically deploy each new change.

Recall that Contiguous Integration (CI) – what we have been practicing emphasizes
frequent small integrations (hence the name). Some of the key principles:
• Maintain a single source repository (with an always deployable) branch
• Automate the build
• Build should be self testing
• Everyone integrates with the master frequently
• Automate deployment

A key element of CI is rigorously testing every integration. We use GitHub actions for
that purpose. Once those tests past we should be ready to integrate and deploy.

https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuou
sIntegration

Once we are confident our application is deployable, there are two related concepts:
* Continuous Deployment: Every change automatically gets put into production, and
thus there are many production deployments each day.
* Continuous Delivery: An extension of CI in which SW is deployable throughout its
lifecycle, the team prioritizes keeping SW deployable, and it is possible to

6

10/29/24

Recall: CI, CD and more
CI rigorously tests every integration in
production-like environment
• Prevent development-production

mismatch
• Test multiple browsers, etc.
• “Stress test” code for performance,

fault-tolerance, etc.
Then we deploy!

Continuous
Integration

Continuous
Deployment

Continuous
Delivery

Deploy every integration

Deploy on demand

By deploying frequently, we make
what was rare and fraught common
and unremarkable!

automatically deploy SW on demand.

https://martinfowler.com/bliki/ContinuousDelivery.html

In our projects we are aiming for a Continuous Delivery-like workflow in which our
applications start and stay deployable throughout the development process. As with
CI, this reduces the complexity (and risk) of deployment by enabling us to do so in
small increments. And Continuous Delivery facilitates getting user feedback by
frequently getting working SW in front of real users. Although to mitigate risk
companies will often first deploy for a small subset of users.

10/31/24

6

As a practical matter, the trend towards DevOps means that as the application
developer you are responsible for more of the traditional ”operations” tasks
(provisioning machines, deploying, etc.) while ”operations” teams are increasingly
automating operational tasks to support frequent deployment, fault tolerance, and
more. That is they are creating tools that turn previously physical tasks, e.g.,
obtaining server hardware, into programmatic tasks.

In addition to csci312.dev, what are some other “DevOps”ey things you have done
this semester? One example is using the “scripts” in the package.json files to
automate complex operations.

Definition sourced from: https://landing.google.com/sre/book

7

10/29/24

Recall: DevOps principles

• Involve operations in each phase of a system’s
design and development,

• Heavy reliance on automation versus human
effort,

• The application of engineering practices and
tools to operations tasks

Increasingly we obtaining the necessary hardware, not by buying servers, but by
programmatically provisioning cloud hardware and various levels of abstraction,
described as "something as a service"

We will often partition *aaS (something-as-a-service) into 3 levels:…

csci312.dev, fly.io, Heroku are examples of PaaS. All of you have to do is push code to
deploy! No or minimal configuration required. Amazon AWS and other cloud
providers would be an example of IaaS. You don’t ever interact with the physical HW
(and can (de-)provision automatically and on-demand), but you are responsible the
installation and configuration of software, configuring networking, etc. csci312.dev is
implemented on top of a IaaS provider (Digitial Ocean), that is I programmatically
provisioned a server for us (somewhere) and configured it for our needs. At the the
lowest-level you could buy and setup the physical HW sometimes in your own data
centers or in rented datacenter space.

As we you move up levels of abstractions, increasingly someone else takes care of
installing Linux, Nginx, etc., patching security vulnerabilities, library (in)compatability,
automating scaling, etc.

8

10/29/24

*aaS: __________ as code

Bare Metal

Infrastructure-
as-a-Service

Platform-as-a-
Service

“Infrastructure
as code”

Three-tier
architecture as
code

Just
infrastructure

1. Deploy (that’s it!)

1. Configure (with tools like
Ansible, etc.)

2. Deploy

1. Rack
2. Configure
3. Deploy

For example, with a PaaS, the platform typically handles … while you handle …

What is the trade-off? You are paying for the PaaS to handle all of those tasks and at
(above) a certain scale you could do it cheaper.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

9

10/29/24

The *aaS division of labor

PaaS handles… You handle…
“Easy” tiers of horizontal scaling Minimize load on database
Component-level performance tuning Application-level performance tuning

(e.g., caching)

Infrastructure-level security Application-level security

Can’t (takes time to update potentially many servers), and don’t (if there are bugs, we
want to expose minimum number of users before rollback).

Preview of role for monitoring. The best case automatically detect problems and
rollback change. Doing so is an example of automation (at a deep level) and
engineering tools applied to operations tasks, i.e., DevOps and SRE fully realized.

What is A/B testing? That is where we want to test a particular design, content, etc.
by performing a randomized experiment, i.e., some users see ”A” and some see “B”,
and we test which performs better, e.g., leads more people to buy.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

10

10/29/24

What about upgrades? Automation
and rigorous processes in action

• Can’t or don’t want to rollout new feature
simultaneously to all servers
Version n and n+1 will co-exist

• Naïve solution: Downtime
• Alternative: Feature flags

1. Do non-destructive migration
2. Deploy code protected by feature flag
3. Flip feature flag on; if disaster, flip it back
4. Once all records moved, deploy entirely new code
5. Apply migration to remove old columns

• Other FF uses: A/B testing, …

What do we mean by internal instrumentation? An example, we don't really do
anything when a fetch failed (except maybe print the error message). Instead, we
could send those errors to a monitoring service that helps us spot patterns, e.g., a
sudden spike in failures for a particular endpoint, etc.

“The sources of potential complexity are never-ending. Like all software systems,
monitoring can become so complex that it’s fragile, complicated to change, and a
maintenance burden. Therefore, design your monitoring system with an eye toward
simplicity.

https://landing.google.com/sre/book/chapters/monitoring-distributed-
systems.html#xref_monitoring_golden-signals

11

10/29/24

Kinds of monitoring

“If you haven't tried monitored it, assume it's
broken.*”
• At development time (profiling)

Identify possible performance/stability problems
before they get to production

• In production
Internal: Instrumentation embedded in application
and/or framework
External: Active probing by other site(s)/tools.

*Google SRE Book

https://landing.google.com/sre/book/chapters/testing-reliability.html

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

12

10/29/24

Performance and security metrics
Availability or Uptime

What % of time is site up and accessible?
Responsiveness

How long after a click does user get response?

Scalability
As number users increases, can you maintain responsiveness
without increasing cost/user?

Authorization (Privacy)
Is data access limited to the appropriate users?

Authentication
Can we trust that user is who they claim to be?

Data integrity
Is users’ sensitive data tamper-evident?

Perform
ance &

Stability

Security

<click> Why can latency be confounded by errors? “Fast” errors will reduce your
overall latency resulting in misleading metrics. Even worse though are “slow errors”.

13

10/29/24

Google’s 4 ”golden” signals

• Latency
Time to service a request

• Traffic
How much demand is being place on your system

• Errors
Rate of requests that fail

• Saturation
How “full” your system is (when will you hit ceiling?)

Application specific metric: requests/s, I/O rate, …

Can be confounded by errors. How?

https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

15

10/29/24

“Premature optimization is the root of
all evil”*

• Users expect speed!
99 percentile matters, not just “average”

• There are lots of reasons for “too slow”
• Don’t assume, measure!

Monitoring is your friend: measure twice, cut once!

*Variously attributed to Hoare, Knuth, Dijkstra, ….

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

16

10/29/24

Simplified (& false) view of response
time

For normal distribution of response times:
±2 standard deviations around mean is 95% CI

Average response time T
means:

95%ile users are getting T+2σ
99.7%ile users get T+3σ

The mean (and standard deviation are very misleading!) You are likely not satisfied
with mean performance. Instead need to have a threshold for ”satisfactory”.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

17

10/29/24

A real example: The long tail

25% 50%
(median)

75%
95%

Mean

https://blog.newrelic.com/2013/09/10/breaking-down-apdex/

<click 2x> How could overachieving possibly be problematic? Creates over-
dependency (i.e., consumer assumes that service never goes down, but then it
does…) Google actually introduces planned outages to prevent over dependency. And
there are a number of tools that have been developed to simulate upstream service
failures to make testing more robust.

https://landing.google.com/sre/book/chapters/service-level-objectives.html

18

10/29/24

Service Level Objective (SLO): Target
value for your service

Instead of worst case or average metric, specify
a percentile, target and window

99% of requests complete in < 1 second, averaged
over a 5 min. window

SLOs set customer expectations
Make sure you have a safety margin
Overachieving can be problematic too!

Service Level Agreements (SLAs) attach
contractual obligations to SLOs

How?

Answer: C

Three nines corresponds to 8h45m57s of downtime per year, so the yearly goal is OK.
However, if it is a monthly goal, only 43m50s of downtime permitted per month, so
we can’t meet our goal this month. See https://uptime.is/99.9.

Note that question isn’t about perception, as we discussed before, but a specific
metric uptime, that is independent of the users.

19

10/29/24

Simplepedia’s target uptime is 99.9%
(three nines...). Yesterday there was a
one-hour outage. Which of the
following is true?
A. Because of the outage, Simplepedia can't meet

its uptime goal this year
B. Simplepedia can still meet its uptime goal for

the year only if there are no more outages
C. Simplepedia can still meet its uptime goal for

the year even if there are more outages
D. Depends on users. If no users tried to access

during window, then uptime wasn't impacted

What this means that are real advantages to staying small… And by that, I mean small
in terms of resources (not in customers, etc.) Conversely, when you are big even small
optimizations have big payoffs, i.e., small relative improvements have big absolute
impacts.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

20

10/29/24

How can you fix “slow”?

• Add more resources, i.e., over-provision
Easy to scale presentation and logic tiers for small
sites (readily automated in the “cloud”)
More expensive for larger sites (10% of 10,000
machines is a big number!)

• Make your application more efficient
Most effective when there is one bottleneck

DB indexes are at their heart a data structures problem, i.e., how do you turn a
linear scan into a sub-linear lookup.

Outgrowing single-machine database requires big investment in sharding,
replication, etc. As an alternative, find ways, like those above to relieve
pressure on the DB.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

10/29/24

The fastest computation is the one you
don’t do

DB is one of the hardest components to scale,
aim to be kind to your database.
• Don’t forget big-O and CS fundamentals, e.g.

Array.include vs. Set for unique
Smart use of DB indexes

• Caching (and memoization more generally)
• Avoid “toxic” queries, e.g.

“n+1” query for associations

Read 100 reviews out of table via foreign key, i.e. Review.movie_id

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

22

10/29/24

Indexes: O(< n) queries

Sub-linear scaling!

Index is a tree, hash-table or other data structure
optimized for efficient database queries

Why not use an index for every field?
• Requires additional storage space for each index
• Slows down insert/edit (need to update the index)

There is another version of this joke: “There are 2 hard problems in computer
science: cache invalidation, naming things, and off-by-1 errors.”

Need to be thoughtful about what can be cached (e.g., do you have to be logged in?)
and handling expiration (e.g,, did something change). For example, imagine Film
Explorer won’t show listings for NC-17 movies to users under 17. How would that
impact caching? Caching would have to be user aware, which would likely prohibit
caching at the web server level (i.e., before the request even got to our application).

Router Cache: on client, reduce server requests
Full Route Cache: reduce rendering cost and improve performance
Request memorization: return values of functions
Data Cache: store data across user requests and deployments
Data source: query cache

See more: https://nextjs.org/docs/app/building-your-application/caching

https://martinfowler.com/bliki/TwoHardThings.html

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

24

10/30/24

Cache what hasn’t changed

“There are
only two
hard things
in Computer
Science:
cache
invalidation
and naming
things.” –Phil
Karlton

DB “leaking” is more relevant to ORMs like Active Record (where queries aren’t so
obvious). Can’t just do the natural thing … need to take DB into account.

This is reminder that while libraries like Objection.js make our life easier and help us
be more productive, it is still critical understand what the tools are doing behind the
scenes. And thus, what is fast or not.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

25

10/29/24

n+1 queries (or leaky abstractions)

User.query().where('zip', '05753').then((fans) => {
 fans.forEach((fan) => {
 fan.$relatedQuery('films')…
 });
});

Recall in the Film Explorer a user ”has many” films “through” ratings

1 query for each user (i.e., n+1 queries for n users)
More subtle for other ORMs, e.g., when
fan.films() is really a query

User.query()
 .where('zip', '05753')
 .withGraphFetched('films')
 .then((fans) => {
 fans.forEach((fan) => {
 fan.films …
 });
});

Just 1 or 2 queries

Answer: B

Recall the foreign keys are not present in the Users or Films table, so A and D are not
relevant/possible answers. To identify the users who rated a movie we will need to
query the Ratings table for all the ratings for that movie. That query will benefit from
an index on Ratings.filmId. The corresponding userId values will be used to query into
the User table (either as a join or separate query). We won't benefit from an index on
Rating.userId, because we are pulling those values from the rows fetch from Rating.

26

10/29/24

Suppose Film has many Users through Ratings.
Which of these foreign-key indexes would most
speedup:
film.$relatedQuery('raters')
which obtains the users who rated that specific film.

filmId userId rating

int int int

12 4 2

53 4 3

id …

int …

12 …

53 …

id …

int …

4 …

5 …

Film Rating User

A. Films.ratingId
B. Ratings.filmId
C. Ratings.userId
D.Users.reviewId

