
Recall: Design Patterns
“A pattern describes a problem that occurs often,
along with a tried solution to the problem” -
Christopher Alexander, 1977

A Design Pattern describes parts of
a problem/solution that are the
same every time

Design Pattern ≠
Specific classes or libraries

Full design

Design Pattern = template

• Creational
Ways to create objects

• Structural
Ways to combine/compose objects

• Behavioral
Ways to communicate between objects

Design patterns in other contexts: The
“gang of four”

Image: https://refactoring.guru/design-patterns/factory-method

Example: I want to implement the same reader
interface for compressed and uncompressed
files so downstream consumers can work with
either.

AbstractFileReader

read(bytes)

makeReader(filename)

CompressedFileReader

read(bytes)

UnCompressedFileReader

read(bytes)

Factory
Method

SOLID* OOP principles (CS312 version)

Motivation: minimize cost of change

• Single Responsibility principle

• Open/Closed principle

• Liskov substitution principle

• Injection of dependencies

• Demeter principle

*Robert C. Martin

Single Responsibility Principle (SRP)

• A class should have one and only one reason
to change

Each responsibility is a possible axis of change

Coupled changes are fragile

• What is a Classes’ responsibility in ≤25 words?

• Example of many responsibilities: User model

A user is a moviegoer, and an authentication
principal, and a social network member, etc.

Example: Extract classes in Model

Customer

name, name=
email, email=

street, street=
zip, zip=

const addrMix = Base => class extends Base {
 isValidZip() { … }
}
const idMix = Base => class extends Base {
 isVIP() { … }
}
class Customer extends addrMix(idMix(Model)) {
 …
}

class Customer extends Model {
 get address() { return new Address(this); }
}
class Address {
 isValidZip() { … }
 get zip() { return this.customer.zip(); }
 …
}

Mixins

Composition & Delegation

Big class with 2+
responsibilities

Which of the following ways of splitting method
is most likely to result in good design?

A. B. C.

Ousterhout. A Philosophy of Software Design

Complexity of interface

Complexity of
implementation

Summary: Single Responsibility
Principle

What: A class should have exactly one
responsibility or reason to change

Symptoms:

High LCOM (lack of cohesion of methods)

Long class with “cliques” of methods

Resolution:

Extract class(es)

Open/Closed Principle

Classes should be open for extension, but closed
for source modification

class Report
 report() {
 if (this.format === "html") {
 new HtmlFormatter(this).report();
 } else if (this.format === "pdf") {
 new PdfFormatter(this).report();
 } …
 }
 …
}

Can’t extend (add new report types)
without changing class code!

Extend the report generator
const reporters = {
 html: HtmlFormatter,
 …
}
export function registerReporter(name, klass) {
 reporters[name] = klass;
}

export default class Report
 report() {
 new reporters[this.format].report();
 }
 …
}

Provide mechanism for adding
reporters

OCP In Practice

• You can’t close against all types of changes;
you must choose and might be wrong

• Agile methodology can help expose important
types of changes early

• Then you can try to close against those types
of changes

Summary: Open/Closed principle

• What: Extending functionality of a class shouldn’t
require modifying existing code, just adding to it

• Symptoms:

Conditional statements based on class or other property that
doesn’t change after assignment

• Resolution:

Abstract factory pattern combined with…

Template and strategy patterns (capture outline of
algorithm’s steps, or of overall algorithm)

Decorator (add behaviors to a base class)

Formalizing subtyping: Liskov
Substitution Principle

Let ϕ(x) be a property provable about objects x
of type T. Then ϕ(y) should be true for objects y
of type S where S is a subtype of T.

Turing Award Winner
Barbara Liskov

TL;DR; A method that works on
an instance of type T, should also
work on any subtype of T

When a Square is not a Rectangle

class Rectangle {
 constructor(w, h) {
 this.w = w;
 this.h= h;
 }
 setWidth(w) { this.w = w; }
}

class Square extends Rectangle {
 constructor(side) {
 super(side, side);
 }
 setWidth(w) {
 this.w = w;
 this.h = h;
 }
}

Assumption is that changing
width doesn’t change height

✘

Summary: Liskov Substitution principle

• What: Instance of subtype of type T can always
be safely substituted for a T

• Symptoms:
Refused bequest: No meaningful way to implement a
behavior of your superclass in a subclass

• Resolutions:
Composition: Rather than inheriting from T, create class
that has a T as a component

Explicitly delegate method calls on T to component
(inheritance is effectively implicit delegation)

Dependency Inversion
& Dependency Injection

• Problem: A depends on B, but B’s
interface & implementation can
change, even if functionality is
stable

• Solution: “Inject” an abstract
interface that A & B depend on
If not exact match, Adapter/Façade

“Inversion”: Now B and A depend on
interface vs. A depending on B

SessionMgr

Database

read_from_db()

store_in_db()

SessionMgr

get_session()

store_session()

«interface»

SessionStore

Database

DI example: Supporting external
services

Customer

this.emailList

Mailchimp*

subscribe

unsubscribe

updateMember

ConstantContact*

addPerson

delPerson

editPerson

AbstractEmailList

subscribe

unsubscribe

updateMember

Adapter and Façade

Similar but not
identical interfaces

*Totally made-up APIs

Summary: Injection of Dependencies
Principle

• What: Rather than one class depending on
another, have both depend on common interface

• Symptom:
Classes depend on “concretions instead of abstractions”

• Resolutions:
Dependency Inversion and Injection

Adapter (convert one interface to another) and Façade
(provide simplified interface)

Demeter Principle (Principle of least
knowledge)

Only talk to your friends ... not strangers

You can call methods on:

Yourself

Your own instance variables, if applicable

But not on the results returned by those
methods

Demeter example: Method/property
chains

PaperCarrier

collectMoney()

Customer

wallet

Wallet

cash

collectMoney() {
 this.customer.wallet.cash -= 10;
 this.collectedAmount += 10;
}

collectMoney() {
 this.collectedAmount += this.customer.pay(10);
}

Imagine testing this code. You would need to:
1. Mock wallet with cash property
2. Mock customer with mock wallet

Now just need one mock function

Summary: Demeter Principle

• What: Talk to friends & friends of friends;
everyone else is a stranger

• Symptoms:
Long chains of method calls, leading to mock
trainwrecks in tests

• Resolutions:
Replace method with delegate (e.g. wrap
customer.wallet.withdraw in Customer.pay)

Visitor pattern (separate traversal from computation)

Observer pattern (be aware of important events)

Knex includes an "abstract" Client class for connecting
with databases. Subclasses of Client exist for each
database. The correct subclass is instantiated based on
configuration in the knexfile. Which SOLID principles
are illustrated by this example (as described here)?

A. Single Responsibility, Liskov Substitution,
Dependency Inversion

B. Open/Closed, Liskov Substitution, Dependency
Inversion

C. Open/Closed, Dependency Inversion, Demeter

D. All five

SOLID Caveat

• Designed for statically typed languages, so
principles have more impact in that context

Designed, in part, to avoid changing type signatures,
recompiling, etc.; not as relevant to JS.

• Use your judgment: Your goal is to deliver
working & maintainable code efficiently

Summary
• Design patterns represent successful solutions to

classes of problems
Reuse of design rather than reuse code or classes

• Can apply at many levels: architecture, design (GoF
patterns), computation

• Separate what changes from what stays the same
Program to interface, not implementation

Prefer composition over inheritance

Delegate!

All 3 are made easier by duck typing (like in JS, Python, etc.)

• Much more to learn about — this is just a quick survey

Which of the following is true about
SW architecture and design patterns in
Plan & Document vs. Agile processes?

A. P&D's explicit design phase results in poor SW
architecture with inappropriate use of design patterns

B. Agile prohibits doing any sort of high-level design, the
code should just evolve

C. Agile can be dependent on developers’ experience to
plan/architect for functionality not yet implemented

D. None of the above are true

Imagine you are implementing a GUI text editor
with multi-level undo/redo for both text and
interface (e.g., cursor position, selection, etc.). Your
current implementation has a Text class that
manages the underlying text of the file, e.g.,
inserting and deleting text, and UI class that
manages the GUI. What are some possible designs?
Specifically, how could you implement undo by
extending the existing Text class or with a separate
class(es).

Which represents a better design in the context of
the principles we discussed today?

	Slide 1: Recall: Design Patterns
	Slide 2: Design patterns in other contexts: The “gang of four”
	Slide 3: Example: I want to implement the same reader interface for compressed and uncompressed files so downstream consumers can work with either.
	Slide 4: SOLID* OOP principles (CS312 version)
	Slide 5: Single Responsibility Principle (SRP)
	Slide 6: Example: Extract classes in Model
	Slide 7: Which of the following ways of splitting method is most likely to result in good design?
	Slide 8: Summary: Single Responsibility Principle
	Slide 10: Open/Closed Principle
	Slide 11: Extend the report generator
	Slide 12: OCP In Practice
	Slide 13: Summary: Open/Closed principle
	Slide 14: Formalizing subtyping: Liskov Substitution Principle
	Slide 15: When a Square is not a Rectangle
	Slide 16: Summary: Liskov Substitution principle
	Slide 18: Dependency Inversion & Dependency Injection
	Slide 19: DI example: Supporting external services
	Slide 20: Summary: Injection of Dependencies Principle
	Slide 21: Demeter Principle (Principle of least knowledge)
	Slide 22: Demeter example: Method/property chains
	Slide 23: Summary: Demeter Principle
	Slide 24: Knex includes an "abstract" Client class for connecting with databases. Subclasses of Client exist for each database. The correct subclass is instantiated based on configuration in the knexfile. Which SOLID principles are illustrated by this exa
	Slide 25: SOLID Caveat
	Slide 26: Summary
	Slide 27: Which of the following is true about SW architecture and design patterns in Plan & Document vs. Agile processes?
	Slide 28

